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Abstract. In this paper, we introduce a thermodynamic based microplane fatigue dam-
age model for plain concrete. The key idea of this approach is to relate the fatigue damage
to a cumulative measure of inelastic sliding/shear strains. Which reflects the fatigue dam-
age accumulation owing to internal friction under subcritical fatigue loading. The model
is formulated within the microplane framework using a homogenization approach based on
the energy equivalence principal with explicit representation of the elastic stiffness. The
model can reflect the triaxial behavior of concrete and model the hysteric loops with the
relation to the fatigue damage propagation of concrete at the macroscopic material rep-
resentation. Elementary studies of the model response and its applicability to modeling
the fatigue behavior of concrete under compression are presented.

1 INTRODUCTION

The concern about the effect of fatigue on concrete structures has increased in the
last decades due to the design of more slender concrete elements. The limited warning
alert of the brittle fatigue failure increasing the importance of studying the behavior of
concrete under fatigue loading. Characterization of concrete fatigue behavior is a chal-
lenging task that has increasingly attracted the attention of researchers during the past
decades. Besides extensive experimental investigations, several attempts have been made
to develop reliable numerical models. However, for concrete, the underlying microstruc-
tural mechanisms governing concrete fatigue damage propagation are still not sufficiently
understood.

Several models addressing the concrete fatigue damage propagation have been pro-
posed in the literature. Pragmatic approaches to modeling use the number of performed
loading cycles directly as a damage driving variable [1]. More advanced approaches to
simulation of fatigue damage process cycle by cycle at subcritical load levels with dam-
age related either to total strain [2, 3], or to the inelastic strain [4]. In order to reflect
the opening/closure and growth of microcracks and/or the frictional sliding along their
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lips, the formulation of the dissipative mechanisms has been refined by introducing the
internal sliding strain as a fatigue damage driving variable [5]. An approach relating the
dissipative terms owing to fatigue damage even closer to the observable disintegration
mechanisms within the material structure appeared recently in [6]. The key idea of this
model is to relate the damage evolution to the cumulative measure of volumetric strain.

Microplane model formulation can be regarded as a coupled multiscale model. Indeed,
it introduces an additional level of state representation below the level of material point.
Even though this level does not have the ambition to reflect the spatial layout of the
material microstructure, it can reflect a damage pattern and its anisotropic evolution
during the loading in a smeared way. It applies the concept of kinematic constraint and
stress homogenization in order to establish a link between the macroscopic and microplane
level of discretization [7, 8].

Fatigue damage developing at subcritical load levels includes several interacting mech-
anisms: development of coalescence of microcracks, repeated crack opening and closure,
internal sliding and friction. The roughness of cracked surfaces and the interlocking of
aggregates generates inelastic strain and impose friction sliding of the microcracks lips
and aggregates. It is important for fatigue modeling to consider the inelastic dissipation
owing to damage (development of microcracks) and internal frictional sliding (within the
deteriorating structure). In spite of the progress in the development of numerical phe-
nomenological material models of fatigue, there is a need to formulate an appropriate
damage hypotheses taking into account the aforementioned mechanisms governed the ac-
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Figure 1: Dissipative mechanisms of the proposed microplane model: a) example of idealized microstruc-
ture with system of assumed microplanes and the load transfer mechanisms under compression loading;
a) microplane directions; c) dissipative mechanisms
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cumulation of damage due to fatigue loading. The framework provided by the microplane
model is ideally suited for reflecting the microscopic interaction of normal and pressure
sensitive friction dissipative mechanisms see Fig 1.

In this paper we introduce a thermodynamically based microplane fatigue damage
model for plain concrete. The key idea of this model is to relate the fatigue damage to a
cumulative measure of inelastic sliding/shear strains. Which reflects the fatigue damage
accumulation owing to internal friction under subcritical fatigue loading.

2 MODEL FORMULATION

Unlike the classical constitutive models where the stress and strain tensors are related
directly, the microplane models work with stress and strain vectors at the planes with vari-
ous directions (microplanes). The strain tensor is projected into the oriented microplanes,
then the constitutive laws are evaluated at each microplane, finally the stress tensor is
obtained by the integration over all microplanes. The skeleton of the model formulation
is presented in Fig 2.

2.1 Kinematic constraint

The strain tensor is projected onto the microplane to obtain strain vectors i.e. normal
and tangential direction with the so called kinematic constraint as follows

εN = N : ε, εT = T : ε, (1)

where the scalar εN is the normal microplane strain, and εT is the tangential microplane
vector. The second order normal tensor N and the third order tangential tensor T are
given as

N = n⊗ n, T = n · Isym − n⊗ n⊗ n, (2)

where n is the microplane normal vector and I is the fourth-order identity tensor.

2.2 Thermodynamic based microplane constitutive laws

The constitutive laws governing the macroscopic behavior are defined on the generic
microplanes. Several dissipative mechanisms are introduced in this model and illustrated
in Fig 1. The corresponding macroscopic thermodynamic potential can be expressed as

ψmac =
3

2π

∫
Ω

ψmicdΩ =
3

2π

∫
Ω

ψmic
N dΩ +

3

2π

∫
Ω

ψmic
T dΩ (3)

Normal microplane constitutive law: The microplane thermodynamic potential of
the normal direction is expressed as

ρψmic
N =

1

2

[
1−H(σN) ωN

]
EN(εN − εPN)2 +

1

2
KNz

2
N +

1

2
γNα

2
N + f(rN), (4)

where ψmic
N is the Helmholtz free energy of the normal direction, ρ is the density, the

normal elastic stiffness is EN = E/(1 − 2ν), where E is the Young modulus and ν is
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Figure 2: Approach to the formulation of the microplane model accounting for fatigue damage driven
by cumulative sliding microplane strain

the Poisson’s ratio. H(σN) is a Heaviside function for switching the normal behavior i.e.
damage under tension H(σ+

N) = 1, and plasticity under compression H(σ−
N) = 0, KN and

γN are the isotropic and kinematic hardening moduli, respectively. The thermodynamic
internal variables are plastic normal strain εPN defining the irreversible strain, damage
variable ωN ranging from 0 to 1, the internal variables of isotropic hardening zN and
kinematic hardening αN. The function f(rN) defined a consolidation function associated
with damage. The thermodynamic forces are obtained by differentiating the thermody-
namic potential (4) with respect to each internal variable. Therefore, the normal stress is
obtained as

σN =
∂ρψN

∂εN

=
[
1−H(σN) ωN

]
EN(εN − εpN). (5)

The thermodynamic hardening forces can be obtained as

ZN =
∂ρψN

∂zN

= KNzN, XN =
∂ρψN

∂αN

= γNαN, (6)

the energy release rate owing to the damage mechanism can be defined as

YN =
∂ρψN

∂ωN

=
1

2
H(σN)EN(εN − εpN)2. (7)

Similar to [10], the thermodynamic force associated with the damage consolidation is
defined as

RN =
∂ρψN

∂rN

=
1

Ad

[
−rN

1 + rN

]
. (8)

where Ad is a material parameter defining the brittleness of the damage evolution. The
yield function of the plasticity governed compressive behavior is given as

fpN = |σ̃N −XN| − ZN − σ0
N ≤ 0, (9)
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where σ0
N is the plastic yielding stress. The flow potential is extended by a non-associative

term introducing a nonlinear hardening is given as follows

φpN = |σ̃N −XN| − ZN − σ0
N +

1

2
mX2

N, (10)

where m is the nonlinear hardening parameter. The threshold function governed the
damage evolution is defined as

fωN = YN − (Y 0
N +RN) ≤ 0, (11)

where the energy release rate threshold is Y 0
N = 1

2
EN(ε0

N)2, ε0
N is the elastic threshold

normal strain. The evolution laws are obtained by differentiating the flow potential for
plasticity (10) and the damage threshold function (11) with respect to the thermodynamic
forces

ε̇pN = λ̇pN
∂f pN
∂σN

= λ̇pN sign(σN −XN) (12)

żN = −λ̇pN
∂f pN
∂ZN

= λ̇pN (13)

α̇N = −λ̇pN
∂f pN
∂XN

= λ̇pN
[
sign(σN −XN) +m XN

]
(14)

ω̇N = λ̇ωN
∂fωN
∂YN

= λ̇ωN (15)

ṙN = −λ̇ωN
∂fωN
∂RN

= −λ̇ωN. (16)

The consistency condition for the plastic yield function can then be written as follows

ḟpN = σ̇N
∂f pN
∂σN

+ ẊN
∂f pN
∂XN

+ ŻN
∂f pN
∂ZN

= 0. (17)

By substituting evolution equations into the consistency condition the plastic multiplier
can be obtained

λ̇pN =
EN ε̇N sign(σN −XN)

EN +KN + γN

[
1 +m XN sign(σN −XN)

] . (18)

In a similar way the damage multiplier can be obtained as

λ̇ωN = 1− 1

1 + Ad(YN − Y0)
. (19)

The illustration of the uniaxial normal behavior at the microplane level is presented in
Fig. 3. The tensile behavior governed by the damage is depicted in Fig. 3a, for different
values of the brittleness parameter Ad. On the other hand, the plastic behavior under
compression is shown in Fig. 3b, for different cases of hardening.
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Figure 3: The uniaxial normal behavior at the microplane level: a) tensile damage (TD) for different
values of the brittleness parameter Ad; b) compressive plasticity (CP) for different hardening cases

Tangential microplane constitutive law: In this modeling approach we assume that
the tangential cumulative damage is the fundamental source of fatigue damage and in-
troduce the tangential microplane behavior in similar way to the pressure sensitive bond
interface model with fatigue damage driven by cumulative inelastic slip presented in [11].
The thermodynamic potential of the tangential direction is given as

ρψmic
T =

1

2
(1− ωT)ET(εT − επT) · (εT − επT) +

1

2
KTz

2
T +

1

2
γTαT ·αT (20)

where ψmic
T is the Helmholtz free energy of the tangential direction, the tangential elastic

stiffness is ET, KT and γT are the isotropic and kinematic hardening moduli respectively.
The thermodynamic internal variables are the inelastic tangential strain vector/sliding
strain vector defining the irreversible strain επT, damage variable ωT ranging from 0 to 1,
the internal variables of isotropic hardening zT and kinematic hardening vector αT. The
thermodynamic forces are obtained by differentiating the thermodynamic potential (20)
with respect to each internal variable as follows

σT =
∂ρψT

∂εT
= (1− ωT)ET(εT − επT) (21)

σπ
T = −∂ρψT

∂επT
= (1− ωT)ET(εT − επT) (22)

XT =
∂ρψT

∂αT

= γTαT (23)

ZT =
∂ρψT

∂zT

= KTzT (24)

YT =
∂ρψT

∂ωT

=
1

2
ET(εT − επT) · (εT − επT). (25)

The effective sliding stress can be written as

σ̃π
T =

σπ
T

1− ωT

= ET(εT − επT). (26)
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The threshold function is defined similarly to plasticity theory and including the sensitivity
to the lateral pressure

fT =
∥∥σ̃π

T −XT

∥∥− Z − σ0
T + a σN (27)

where ‖.‖ defining the norm of the vector, σ0
T the tangential reversibility limit, σN is the

normal microplane stress, and a is the pressure sensitivity parameter. The non associative
flow potentials defined as

φT = fT +
S(1− ωT)c

(r + 1)

(
σ0

T

σ0
T − a σN

)(
YT

S

)r+1

(28)

The evolution equations can be obtained as

ε̇πT = λ̇πT
∂φT

∂σπ
T

=
λ̇πT

1− ωT

σ̃π
T −XT∥∥σ̃π
T −XT

∥∥ (29)

żT = −λ̇πT
∂φT
∂ZT

= λ̇πT (30)

α̇T = −λ̇πT
∂φT

∂XT

= λ̇πT
σ̃π

T −X∥∥σ̃π
T −X

∥∥ (31)

ω̇T = λ̇πT
∂φT

∂YT

= (1− ωT)c

(
σ0

T

σ0
T − a σN

)(
YT

S

)r
λ̇πT. (32)

In analogy to the normal direction, the sliding multiplier can be obtained

λ̇πT =
ET ε̇T · (σ̃π

T −X)/
∥∥σ̃π

T −X
∥∥

ET/(1− ωT) +KT + γT

. (33)

To illustrate the proposed cumulative sliding behavior of tangential microplane direction,
an elementary example of the tangential stress - strain relationship under monotonic and
cyclic strain controlled loading is depicted in Fig. 4a showing the degradation of the stress
under cyclic loading. The corresponding evolution of the damage is shown in Fig. 4b. This
behavior is essential for the model to include the fatigue damage owing to the internal
frictional sliding.

2.3 Homogenization

The homogenization approach introduced by [9] based on the principle of energy equiv-
alence is used for the damage in this study. This principle works with the effective stress
and strain tensors ε̃, σ̃. These effective quantities reflect the condition of the undamaged
material and the relation between the effective strain and stress tensors can be written as
follows

σ̃ = De : ε̃, (34)
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Figure 4: The tangential behavior at the microplane level (CSD): a) monotonic and cyclic stress-strain
relationship; b) the corresponding damage evolution

whereDe is the fourth order elastic stiffness tensor. The relation between the macroscopic
stress tenser σ and the effective stress tensor σ̃ is given as follows

σ = β : σ̃, (35)

where β is the fourth order damage inverse/integrity tensor. The relation between the
effective strain tensor ε̃ and the macroscopic strain tensor ε is given as

ε̃ = βT : ε. (36)

By substituting (34) and (36) into (35) we can write

σ = β : σ̃ = β : De : ε̃ = β : De : βT : ε, (37)

therefore the secant stiffness tensor is obtained as

D = β : De : βT. (38)

The fourth order inverse damage tensor can be written as

βijkl =
1

4
(φikδjl + φilδjk + φjkδil + φjlδik), (39)

In this modeling approach we assume that the tensile behavior is governed by the nor-
mal microplane damage, and the compressive behavior is governed by the plastic normal
behavior and the cumulative sliding damage.

The second order integrity tensor φ and the elastic stiffness tensor are given as

φij =
3

2π

∫
Ω

φmic ninjdΩ =
3

2π

∫
Ω

√
(1− ωmic(n)) ninjdΩ, (40)

De
ijkl = λδijδij + µ(δikδjl + δilδjk). (41)

Plastic strain tensor: According to [12] the macroscopic plastic strain tensor can be
obtained as the integral of the microplane plastic strains as follows

εpij =
3

2π

∫
Ω

εp,mic
N ninjdΩ +

3

2π

∫
Ω

επ,mic
Tr

2
(niδrj + njδri)dΩ. (42)
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Macroscopic stress tensor: The macroscopic stress tensor can be obtained as follows

σ = β : De : βT : (ε− εP ). (43)

3 ELEMENTARY STUDY OF THE MODEL RESPONSE

To study and evaluate the model behavior under elementary loading conditions simu-
lations at the level of a single material have been conducted. As emphasized in [8], single
material point simulations are important to verify the fundamental model behavior and
to calibrate the model parameters. A benchmark test data for different concrete types
from the literature are used to evaluate the model response. For this analysis, the nu-
merical integration over the hemisphere has been performed with nmp = 28 number of
microplanes.

Fig. 5a, shows the simulation with parameters adjusted to fit the uniaxial compression
test data presented by [13]. Another simulation shown in Fig. 5b presents the fit for
uniaxial tension test data presented by [14]. The biaxial failure envelope test data reported
in [15] is depicted in Fig. 5c and compared with the numerical results obtained by the
model.

The cyclic uniaxial compression test data presented by [16] is depicted in Fig. 6b.
The response obtained using the numerical model is shown in Fig. 6a together with the
calculated monotonic envelope. The areas of the obtained hysteretic loops representing
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Figure 5: Elementary study of the model behavior under monotonic loading with comparison to exper-
imental results: a) uniaxial compression ; b) uniaxial tension; c) biaxial failure envelope
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Figure 6: Elementary study of the model behavior under cyclic loading with comparison to experimental
results; a) results obtained by the model; b) experimental results

the dissipated energy during the cyclic loading history show an acceptable agreement
with experimental results. The numerical results show progressive degradation of the
compressive stress during the cyclic loading. The comparison to the monotonic envelope
reveals the accumulation of the damage governed by the internal sliding, which is essential
aspect for modeling of the fatigue behavior of concrete.

To elucide the internal structure of the introduced model, an elementary example of
the model behavior exposed to compressive fatigue strain loading is depicted in Fig. 7. In
the example, the parameters obtained from the uniaxial compression test shown in Fig. 5a
have been used. The stress-strain relationship for the monotonic and fatigue loading with
four different strain ranges up to 100 cycles is shown in Fig. 7a. The corresponding com-
pressive stress decrease at maximum stain over cycles ”fatigue relaxation curve” for the
different cases is presented in Fig. 7b. It shows rapid decay of the compressive stress for
the increased loading range. These curves show that the model can capture the degra-
dation of the material during the cycling. This aspect is essential for fatigue modeling
showing the degradation of the material strength due to the fatigue loading. The mi-
croplane sliding damage evolution at each microplane for the different four loading ranges
is depicted in Fig. 7c, showing that for the largest loading range plotted in the blue color,
the sliding damage has propagated in a larger number of microplanes in comparison to
the other loading ranges.

4 CONCLUSIONS

The proposed microplane model is formulated within the thermodynamic framework
of the microplane constitutive laws. The key idea of the proposed model is to relate
the fatigue damage to a cumulative inelastic sliding stains introduced at the microplane
level. The initial study of proposed model showing acceptable description the elementary
test data for concrete in the literature. The introduced cumulative sliding damage at
the microplane level as fatigue damage source presents a good chance to describe the
fatigue behavior of concrete under compression loading. Further systematic calibration
and validation procedures of the model with regularization technique will be conducted
in the future.
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beanspruchung. konstruktiven ingenieurbau. Ruhr-universiät bochum (2003).

[2] J. Marigo, Modelling of brittle and fatigue damage for elastic material by growth of
microvoids,Engineering Fracture Mechanics,21(4)(1985) 861-874.

[3] A. Alliche, Damage model for fatigue loading of concrete, International Journal of
Fatigue,26(9)(2004) 915-921.

[4] V. M. Kindrachuk, M. Thiele, J. F. Unger, Constitutive modeling of creep-fatigue
interaction for normal strength concrete under compression, International Journal of
Fatigue,78(2015)81-94.

11



A. Baktheer, J. Hegger and R. Chudoba

[5] R. Desmorat, F. Ragueneau, H. Pham, Continuum damage mechanics for hystere-
sis and fatigue of quasi-brittle materials and structures, International Journal for
Numerical and Analytical Methods in Geomechanics 31(2)(2007)307-329.
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[7] Caner, F.C., Bažant, Z.P., 2013a. Microplane Model M7 for Plain Concrete. I: For-
mulation. Journal of Engineering Mechanics 139, 1714-1723.
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