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Abstract. Adequate resolution of the flow field is vital to ensure that simulations are
sufficiently spatially converged. However, a too finely resolved mesh can lead to excessive
computational times. Adaptive Mesh Refinement (AMR) algorithms are able to balance
these two constraints by increasing the resolution only where it is needed. In this work,
a block-Structured Adaptive Mesh Refinement (SAMR) solver has been coupled to the
Mutation++ thermochemical library to enable high resolution simulations of flows in
thermochemical nonequilibrium. The solver has been verified using the Method of Man-
ufactured Solutions and computations of hypersonic flows are presented, demonstrating
the thermochemical model and the ability of AMR algorithms to resolve flow features.

1 INTRODUCTION

The speeds of hypersonic flight create conditions where thermodynamic relaxation and
chemical reactions occur throughout the shock layer, up to the surface of a vehicle. It is
vital to account for this thermochemical nonequilibrium in order to obtain an accurate
description of the aerothermodynamic environment a hypersonic vehicle experiences.

The two temperature model of Park [1] has been used in a number of solvers that sim-
ulate hypersonic flows. The method was implemented in the structured solvers LAURA
(Langley Aerothermodynamic Upwind Algorithm) [2] and DPLR (Data Parallel Line Re-
laxation) [3], and then in unstructured solvers such as US3D (UnStructured 3D) [4] and
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LeMANS (The Michigan Aerothermodynamic Navier-Stokes solver) [5]. These have shown
that the two temperature model delivers good agreement with experimental results. In
this work the model is implemented within a solver that is tightly coupled to an Adaptive
Mesh Refinement (AMR) framework.

AMR algorithms aim to minimise the computational cost of simulations by increasing
the resolution only where it is needed. The computational framework AMROC (Adaptive
Mesh Refinement in Object-oriented C++), implements the Cartesian block-Structured
Adaptive Mesh Refinement (SAMR) algorithm of Berger and Colella on parallel com-
puters with distributed memory, where non-Cartesian geometries are considered with an
embedded boundary approach [6]. A shock capturing finite volume method has been inte-
grated with the framework to allow highly adaptive simulations of flow fields that include
discontinuities.

In previous work [7], a single-temperature TVD-MUSCL scheme for simulating reacting
mixtures of thermally perfect gases was developed. In the present work, AMROC has
been extended and coupled to the Mutation++ library [8] in order to model flows in
thermochemical nonequilibrium using the two temperature model. In addition to the
embedded boundary method that was previously implemented, the solver is also able to
model non-Cartesian geometries using mapped computational grids, on meshes that are
uniform for now.

In Section 2 the governing equations of the thermochemical nonequilibrium model are
given. The numerical implementation has been verified using the Method of Manufac-
tured Solutions (MMS), as described in Section 4. Finally, three computations using the
AMROC thermochemical nonequilibrium solver are presented in Section 5.

2 GOVERNING EQUATIONS

In the two temperature model, the translational and rotational energies of all species
are assumed to be in equilibrium at the translational-rotational temperature Ttr. The
vibrational and electronic energies of all species are assumed to be in equilibrium at the
vibrational-electronic temperature, Tve. Using the two temperature model, the governing
equations in Cartesian coordinates for inviscid, two dimensional flow are,

∂Q

∂t
+
∂F

∂x
+
∂G

∂y
= W (1)

where the vector of conserved variables Q, the flux vectors F and G, and the source vector
W are given by,

Q =



ρ1
...
ρNs

ρu
ρv
ρeve

ρE


, F =



ρ1u
...

ρNsu
ρu2 + p
ρvu
ρeveu

(ρE + p)u


, G =



ρ1v
...

ρNsv
ρuv

ρv2 + p
ρevev

(ρE + p)v


, W =



ẇ1
...

ẇNs

0
0
Qve

0


. (2)
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The thermodynamic state and source terms are calculated using the open source ther-
mochemical library, Mutation++ [8]. The library has been designed to work with high
enthalpy flows and contains the functionality to close the governing equations given above.
The below equations describe the Mutation++ implementation of the two temperature
model for a mixture of neutral species.

The mixture density, ρ, is calculated as the sum of the partial densities, ρs,

ρ =
Ns∑
s=1

ρs , (3)

and the pressure, p, is determined using the ideal gas equation and Dalton’s Law of partial
pressures,

p =
Ns∑
s=1

ps =
∑
s

ρs
Ru

Ms

Ttr , (4)

where Ru is the universal gas constant and Ms is the molecular weight of species s. The
total energy of the flow is calculated as,

E =
N∑
s=1

ρs
ρ
es +

1

2
u2 , (5)

where the specific internal energy of each species is given by the sum of each of the internal
modes and the energy of formation,

es = ets(Ttr) + ers(Ttr) + evs(Tve) + eels (Tve) + e0s . (6)

The Rigid-Rotator Harmonic-Oscillator (RRHO) model is used to calculate the internal
energies of the molecule. In this model the equations for the internal energy within
each mode are derived using a combination of statistical thermodynamics and quantum
mechanics [9], giving,

ets(Ttr) =
3

2

Ru

Ms

(Ttr − Tref) , (7)

ers(Ttr) =

{
Ru

Ms
(Ttr − Tref), for diatomic molecules,

0, for atoms,
(8)

evs(Tve) =

{
Ru

Ms

θv,s
exp(θv,s/Tve)−1 , for diatomic molecules,

0, for atoms,
(9)

and

eels (Tve) =
Ru

Ms

∑∞
i=1 gi,s θel,i,s exp (−θel,i,s/Tve)∑∞

i=1 gi,s exp (−θel,i,s/Tve)
. (10)

In these equations, Tref = 298.15 K, θv,s is the characteristic vibrational temperature of
species s and, gi,s and θel,i,s are the degeneracy and characteristic electronic temperature,
respectively, at energy level i for species s. Although the electronic energy levels are
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summed from i = 1 to i = ∞, only the lower electronic energy levels are usually consid-
ered. The large characteristic electronic temperatures of the higher levels mean that they
are not excited at the conditions found in hypersonic flows.

The net production rate of a species, ẇs, is calculated as the sum of the species pro-
duction rate in each reaction,

ẇs = Ms

Nr∑
r=1

(βsr − αsr)

[
kf,r

Ns∏
i=1

(
ρi
Mi

)αir

− kb,r
Ns∏
i=1

(
ρi
Mi

)βir]
, (11)

where Nr is the number of reactions involving species s, β and α are the stoichiometric
coefficients, kf,r is the forward reaction rate and kb,r is the backward reaction rate. The
forward reaction rate is found using the Arrhenius equation,

kf,r(Tc) = Af,rT
ηf,r
c exp [−θr/Tc] , (12)

where Ar is the reaction rate constant, θr is the activation temperature and ηf,r is a
constant. The rate controlling temperature Tc is determined using Park’s two temperature
model [1]. The backwards reaction rate is calculated using the forward reaction rate and
the equilibrium constant, which is calculated as a function of the Gibbs free energy [8].

The source term used to account for a change in the vibrational-electronic energy is the
sum of the translational-vibrational energy exchange and energy changes due to chemical
reactions,

Qve =
∑
s

QT−V
s +QC−V

s +QC−el
s . (13)

The translational-vibrational energy exchange, QT−V
s , is modelled using a Landau-

Teller type equation,

QT−V
s = ρs

evs(Ttr)− evs
τT−Vv,s

, (14)

where the vibrational relaxation time is given by the Millikan and White formula, with
modified constants [10] and the Park correction time,

τT−Vv,s =

N∑
r=1

Xr

N∑
r=1

Xr

τT−V
s−r +τps−r

. (15)

The Millikan and White relaxation time is found using the empirical formula,

p τT−Vs−r = exp
[
As,r

(
T
−1/3
tr −Bs,r

)
− 18.42

]
(in atm-sec), (16)

and the Park correction time takes the form,

τ ps−r =

√
πkBµs,rTtr

8NA

1

σsp
. (17)
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where the collision cross section, σs is calculated as,

σs = 3 x10−21
(

50, 000

min(Ttr, 20, 000)

)2

. (18)

The source terms accounting for change in the vibrational and electronic energy due
to chemical reactions, QC−V

s , QC−el
s , are given by,

QC−V
s = c1ẇse

v
s , QC−el

s = c1ẇse
el
s . (19)

In both cases a non-preferential model is used with c1 = 1.

3 NUMERICAL IMPLEMENTATION

In this work, the governing equations for thermochemical nonequilibrium flow have been
integrated into the AMROC framework. The solver uses the MUSCL-Hancock scheme
[11, 12] and Strang splitting [13] to achieve second order accuracy in both space and
time [6]. The reconstruction of variables at the cell faces is carried out by interpolating
the primitive variables ρs, u, Ttr and Tve. The inviscid fluxes are calculated using two
temperature versions of the AUSM [14] flux scheme and the van Leer flux vector splitting
method [15].

The nonequilibrium solver uses the level set method with ghost cells [6] or the mesh
mapping described by LeVeque [16] to model non-Cartesian geometries. 2D axisymmetric
flows can be simulated using an axisymmetric source term that takes the form given by
Anderson [9].

4 METHOD OF MANUFACTURED SOLUTIONS

The solver was verified using the Method of Manufactured Solutions (MMS). The MMS
procedure was first introduced by Roache [17] and is able to verify any code that solves
ordinary or partial differential equations [18].

A set of solutions for a two species mixture of O2 and N2 was manufactured in terms
of the variables ρs, u, eves and Ttr. These solutions were substituted into Eqs. (3) to
(8), to calculate the pressure, mixture density and mixture energies that are used in the
governing equations (Eq. (2)). The source terms in the governing equations were replaced
by the analytic MMS source term, which was created using the computational algebra
package SymPy [19].

The solutions take a similar form to those given by Roy [20],

φ = φ0 + φx sin(aφ,xπx) , (20)

and
φ = φ0 + φx cos(aφ,xπx) , (21)

and the constants used in each manufactured solution are shown in Table 1. To fully
test the flux schemes, two velocity solutions are used to give a supersonic solution and a
subsonic solution. The vibrational-electronic energy levels were determined using Tve ≈
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2000 K. The computational domain stretched between -0.5m ≤ x ≤ 1.5m and the error
between the manufactured solutions and computed results was calculated on four succes-
sively finer grids, with a grid refinement ratio of 2.

φ0 φx aφ,x

ρO2 (kg/m3) 0.75 0.1 1.0
ρN (kg/m3) 1.0 -0.15 0.5
u (subsonic) (m/s) 600 80 1.5
u (supersonic) (m/s) 1050 100 1.5
eveO2

(J/kg) 285548 20000 0.75
eveN (J/kg) 40 5.0 0.75
Ttr (K) 1000 200 1.0

Table 1: The constants used in the two temperature MMS tests.

Figure 1 shows the results of the convergence tests when using the van Leer flux scheme.
One can see that the scheme is converging at approximately second order accuracy. Similar
results were obtained for the subsonic AUSM flux scheme and the results for the supersonic
cases are identical for both flux schemes, as expected.

The convergence tests verify both the discretisation of the governing equations, and
implementation of the equations of state that were used to derive the analytic source
term. Hence, Eqs. (3), (4), (6), (7) and (8), which are implemented in Mutation++, are
also verified.

5 SIMULATION RESULTS

5.1 Double Wedge Simulation

A simulation of high enthalpy flow over a double wedge is presented. The simulation
is based on the experiment of Pezzella et al. [21], where a double wedge was placed into a
high enthalpy flow of air. The experimental set up is summarised in Table 2, which gives
the wedge geometry and freestream conditions. The geometry is defined by the wedge
section lengths, L1 and L2, and angles, θ1 and θ2.

L1 θ1 L2 θ2 T∞ p∞ U∞ M∞ Run time

50.8 mm 30◦ 25.4 mm 55◦ 710 K 0.78 kPa 3812 m/s 7.14 242µs

Table 2: Double wedge geometry and experimental conditions.

A five species mixture of air was used in the simulation, with the reaction rate constants
of Park [10]. An initial 200× 200 cell mesh was used, with three levels of adaptive mesh
refinement and the computation was run on 32 processors. The level set method with
ghost cells was used to represent the double wedge geometry, and the fluxes were calculated
using the van Leer flux scheme.

Figure 2 shows the density field and mass fraction of atomic oxygen, whilst Fig. 3
shows the level of refinement and the distribution of cells across the available processors.
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One can see that the density field is highly resolved at the shock and interaction locations
due to the adaptive mesh refinement. Dynamic load balancing is used to distribute the
computational cells across the available processors, resulting in areas of high refinement
being distributed amongst many processors.

5.2 Lobb Sphere Simulations

The shock standoff distance in hypersonic flows is related to the level of thermochemical
nonequilibrium [22]. As such, experiments which measure shock standoff distance from a
body travelling at a high velocity can be used to validate nonequilibrium models.

The experimental data of Lobb [22] gives shock standoff distances for half inch diameter
spheres travelling between 4, 000 m/s and 6, 500 m/s in air, at four different pressures.
Schlieren images were then used to determine the shock standoff distance.

The AMROC solver was used to simulate the experiments conducted with a freestream
pressure of 1333 Pa (10 mmHg), using a 5 species mixture of air, the Park reaction rate
constants and the AUSM flux scheme. In addition to validating the thermochemical
model, these simulations were used to verify the axisymmetric source term by using a
2D-axisymmetric computational domain. The ghost fluid method was used to create the
sphere and three levels of AMR were used.

A comparison between the simulated and experimental results are shown in Fig. 4 and
Table 3, and the thermochemical nonequilibrium is shown in Fig. 5. One can see that
the greatest difference between the simulated and experimental shock standoff distances
is less than 10% (less than 5% including the experimental error estimates). However, at
higher Mach numbers the shock standoff distance is underestimated. The underestimation
of the shock standoff distance is identified as a common issue in Park’s review of the
two temperature model [23]. Park suggests that this may be due to differences between
the translational and rotational temperatures, which are not accounted for in the two
temperature model.

Mach No. 8.4 11.2 11.6 14.0 14.2 14.8 16.1

Difference (%) 0.98 0.78 5.49 5.23 6.24 5.83 8.48
Err. Diff. (%) N/A N/A 4.47 4.02 0.13 3.34 4.51

Table 3: The difference between the simulated and experimental shock standoff distances, with and
without the experimental error estimates.

5.3 Mapped Mesh Computation

In this simulation the implementation of the mapped mesh algorithms were verified. A
hypersonic flow of nitrogen around a cylinder was simulated using both a mapped mesh
and the ghost cell method.

The simulations recreate the experiments of Hornung [24], with the freestream condi-
tions taken from Ref. [25]. The experimental conditions are shown in Table 4.
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Cylinder Radius Mass Frac. N2 Mass Frac. N T∞ p∞ U∞ M∞

0.0127 m 0.927 0.073 1833 K 2.91 kPa 5590 m/s 6.14

Table 4: Cylinder geometry and freestream conditions

In order to transform the computational domain, (ξ, η), to a cylindrical domain, (x, y)
the following transformation functions were used:

x = ξ cos(η), y = −ξ sin(η). (22)

The computational domain was given by −0.03 ≤ ξ ≤ −0.0127 and 0 ≤ η ≤ π/2 in order
to create a half inch radius cylinder.

Figure 6 shows a comparison between the mapped mesh simulation and a simulation
conducted using the ghost fluid method and two levels of adaptive mesh refinement. The
agreement between the two simulations is very good, with the shock shape and standoff
being similar. The shock standoff distance on the mapped mesh is approximately 2-3%
greater, which could be partly due to more numerical diffusion as the AMR has not
been integrated with the mapped mesh. A comparison of computational meshes in the
stagnation region is shown in Fig. 7.

6 CONCLUSIONS

The governing equations required to model hypersonic flows have been integrated into
the AMROC framework. The source terms and thermodynamic properties of the flow are
calculated using the Mutation++ library. The solver has been verified using the Method of
Manufactured Solutions and several computations are presented, demonstrating different
aspects of the solver and showing good agreement with experimental data.

This work has demonstrated the ability of the AMR solver to produce highly resolved
results in regions with complex shock-shock interactions, and shown the two temperature
model is able to predict the thermochemical nonequilibrium in hypersonic flows. Future
work aims to add viscous fluxes to the solver and couple a near-body mapped mesh with
an off-body adaptive mesh using overset algorithms.
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Figure 1: The subsonic (left) and supersonic (right) Method of Manufactured Solutions convergence
results, using the van Leer flux scheme.

Figure 2: The density field in the shock-shock interaction region (left) and the mass fraction of atomic
oxygen (right) in the double wedge simulation.
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Figure 3: The mesh refinement levels (left) and the parallel distribution (right) in the double wedge
simulation.
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Figure 4: A comparison of the simulated and measured shock standoff distances (left) and an example
plot of the pressure field (right). The shock standoff distance (∆) is normalised by the sphere diameter

(D = 0.5 inches).
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Figure 5: The thermochemical nonequilibrium in the shock layer of the Mach 16.1 simulation.

Figure 6: A comparison between the mapped mesh cylinder simulation (left) and the ghost fluid
method cylinder simulation (right).

Figure 7: A comparison between the mapped mesh (left) and the refined mesh (right).
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