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Abstract. We report high-order implicit Large Eddy Simulations of flows around elon-
gated bluff bodies with massive flow separation and reattachment. The aim is to pro-
vide evidence of the influence of relevant flow parameters such as the geometry of the
leading-edge corners and the presence or not of a trailing-edge flow separation, on the
behaviour of the initially laminar recirculating flow. Attention will be devoted also on the
possible repercussions of such a results on the understanding of the nature of the main
unsteadinesses of separating and reattaching flows. We finally prove the computational
efficiency and the reliability of the proposed solution strategy for the time implicit high-
order Discontinuous Galerkin (DG) discretization of the three-dimensional incompressible
Navier-Stokes equations. The algorithm uses a linearly implicit Runge-Kutta scheme of
the Rosenbrock type, and a p-multigrid preconditioned matrix-free linear solver.

1 INTRODUCTION

One of the main feature of separating and reattaching flows is the combined presence
of small scales due to the occurrence of turbulence and large scales due to phenomena of
shedding of large-scale vortices. These phenomena nonlinearly interact themselves giving
rise to a self-sustained cycle. Two main large-scale unsteadinesses are recognized: the
shedding of vortices from the leading-edge shear layer and the low-frequency flapping
mode of the recirculating region [1]. Despite the fact that these kind of phenomena have
been the subject of several numerical and experimental studies, their nature is still elusive
and deserves further investigations. Indeed, a deeper understanding of the origin of the
main unsteadinesses of separating and reattaching flow may have strong repercussions on
the development of control strategies relevant for a huge number of applications in natural
and engineering sciences. Here, we aim at providing a further develop on the knowledge
of such phenomena.

Numerical experiments have radically changed the approach to fluid dynamics. As
an example, numerical simulations generally allow for broad observational capabilities
that experiments cannot give. Another important feature of numerical experiments is



A. Cimarelli, M. Franciolini and A. Crivellini

the ability to manipulate the flow in order to remove/suppress or add/enhance physical
processes and to measure the effects of those modifications on the dynamics of the flow. In
this work, we make use of this ability in order to identify the main parameters controlling
separating and reattaching flows and to understand the physical origin of the related
mechanisms. In particular, we start by considering the flow around a rectangular cylinder
(run1 ) which is recognized to be a very simple flow configuration for the analysis of
separated and reattaching flow [2, 3, 4, 5, 6, 7]. In order to appreciate the effects of
shedding phenomena at the trailing edge on the behaviour of the main recirculating region,
we then consider the flow around an infinite plate with right-angled (run2 ). As shown
in [8, 9, 10], also this flow is recognized to be of overwhelming interest for the study
of large scale recirculating flows. Regarding the case of infinite plates with leading edge
separation bubble we also address the effect of the leading-edge geometry on the physics of
the recirculating region, by considering also an infinite flat plate with circular leading-edge
corner (run3 ). Overall, the simulation of the above mentioned three type of separating
and reattaching flows would allows us to identify the role played by the geometry of the
leading-edge corner and of the presence or not of a trailing-edge flow separation, on the
dynamics of the recirculating flow. A sketch of the flow configurations is reported in figure
1.

Finally, by considering a fourth type of simulation, we also aim at understanding the
nature of the so-called large-scale unsteadiness [1]. It consists of a very slow flapping
mode of the recirculating bubble. The unsteadiness at the basis of this enlargement and
shrinkage of the recirculating region, could take origin from coupling phenomena between
the shedding of large-scale vortices from the recirculating flows in the two sides of the
plate. To understand this, the fourth type of simulation (run4 ) reproduces the separating
and reattaching flow over an infinite plate with circular leading edge such as (run3 ) but
removing possible interactions between the two sides of the plate by applying a symmetry
boundary condition in the half horizontal plane of the domain, see again figure 1.

2 THE NUMERICAL PROCEDURE

For the numerical experiments, the set of the incompressible Navier–Stokes (INS) equa-
tions is solved using an implicit LES approach. In other words, the approach relies on the
dissipation properties of the numerical scheme without the use of an explicit SGS model.
The numerical method is based on a modal DG framework with orthonormal, hierarchical
basis functions, thus the mass matrix is the identity, defined in the physical space. The
solver relies on a triangulation Th of the domain Ω. The state vector is assumed to be a
polynomial expansion with no continuity constraints imposed on the approximations on
adjacent elements uh ∈ [Vh]M where Vh = {u ∈ L2(Ω) : u|K ∈ Pk,∀K ∈ Th}, M = 4 is
the number of equations of the model and k is the order of polynomial approximation.
The weak-form of the incompressible Navier–Stokes equations follows from multiplying
the set of PDEs by test functions in the same approximation space, integrating by parts,
and coupling elements via consistent and stable numerical fluxes. The artificial viscosity
flux approach [15, 14, 17] and the second form of the Bassi–Rebay scheme (BR2) [16] are
employed for the convective and diffusive terms, respectively. By following this procedure
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Figure 1: Configuration of the simulated flows. The geometry of the rectangular cylinder (run1 ) is
shown with a black line while its extension without trailing edge (run2 ) is reported with a red line. The
same red lines is used to show the flat plate geometry with circular leading edge (run3 ) also reported
with a red line. The symmetry plane used for the simulation of half the domain of the flat plate with
circular leading edge (run4 ) is highlighted with a green dashed line.

a system of ordinary differential equations can be written in the form

M
dU

dt
+ R = 0 (1)

being U the vector of degrees of freedom, R the residuals vector and M a modified mass
matrix equal to the identity matrix apart from the entries corresponding to the pressure
DoFs, which are zero. The system of ODE is advanced in time using a Linearly-implicit
Rosenbrock-type Runge–Kutta scheme named ROSI2PW [12]. The scheme can be written
in general as

U(n+1) = Un +
s∑

j=1

mj∆Uj, (2)

(
M

γ∆t
+
∂R(Un)

∂U

)
∆Ui = −R

(
Un +

i−1∑
j=1

aij∆Uj

)
− M

∆t

i−1∑
j=1

cij∆Uj, (3)

with i = 1, ..., s, where s is the number of stages and mj, aij, cij are the set of coefficients.
Such strategy requires to solve a number of linear systems equal to the number of the
stages. To this end, a p-multigrid (pMG) algorithm is employed as a preconditioner for a
matrix-free (MF), flexible GMRES solver. Such strategy uses, as lower level smoothers,
preconditioned iterative linear solvers acting on matrices, namely Ai, built by using the
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BJ-MB AS(1)-MB BJ-MF pMG-MF 3LVL pMG-MF 4LVL

GMRES 115 72 115 5 (5) 4.2 (4.7)
CPU Ratio 1 1.11 0.95 0.47 (0.34) 0.39 (0.36)

Memory Ratio 1 1.60 0.60 0.15 (0.15) 0.27 (0.27)

Table 1: Computational efficiency of different solution strategies, run3 test case, using 540 Intel Xeon
CPUs.

entries of A = (γ∆t)−1M + ∂R/∂U corresponding to a lower order polynomial, i. Sim-
ilarly, all the multigrid restriction and prolongation operations can be easily performed
by selecting directly the appropriate DoFs. Note that the scaling law for the memory
required by the allocation of A is k6 [11]. Therefore the size of Ai is reasonably small
for i � k. For instance, when k = 6, A1 is 441 times smaller than A. For this reason
the use of few multigrid levels with low order smoothers does not significantly affect the
memory request. In addition, if an element-wise block-Jacobi (EWBJ) preconditioner,
which employs the factorization of the block-diagonal portion (local to the element) of
the iteration matrix and discards the memory consuming off-diagonal blocks, is adopted
for the smoother of the finest level it is possible to obtain an effective but still memory
saving strategy. Note hat the matrix-free approximation replaces the A matrix not only
in the outer GMRES solver, but also in the finest level smoother. As a consequence, the
explicit evaluation of the off-diagonal blocks of the Jacobian matrix can be performed at
a reduced cost since they are solely needed to build the preconditioner smoothers for the
coarser-space operators.

To prove the effectiveness of the proposed approach, Table 1 reports numerical ex-
periments performed at k = 6 on the run3 test case and shows the average number of
GMRES iterations to reach and unpreconditioned relative tolerance of 10−5, as well the
CPU time and the memory footprint of the solution strategies, both relative to a standard
approach. These results were obtained using 15 nodes, each equipped with two 18-cores
Intel Xeon E5-2697 CPUs, of the MARCONI A1 HPC cluster available at CINECA. Five
solution strategies are here considered and compared. The first one, which is the reference
and it is labelled as block-Jacobi matrix-based (BJ-MB), uses the analytical A matrix
and performs the ILU(0) on the squared, domain-wise portion of the iteration matrix for
preconditioning purposes. Such strategy looses efficiency as the number of domains in-
crease. A second choice, which compensates partially this effect, is the Additive Schwartz
method (AS). The idea is to increase the coupling between the domain partitions by
duplicating a specified number of layers of elements on the partition boundaries. The
ILU(0) is therefore performed in a larger partition-wise portion of the iteration matrix if
compared to the BJ. The last results deal with the matrix-free implementation and with
the use of a pMG preconditioning strategy. Firstly, the table puts in evidence that the use
of the Additive Schwartz method increases both the CPU time and the memory footprint
of the code despite reducing the number of GMRES iterations. This behaviour is not
surprising, since the additional relative amount of memory required for the storage of the
overlapping layer of elements raises decreasing the number of elements per partition (in
this case 71), as well as the relative amount of communications. On the other hand, us-
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ing the BJ preconditioner and a matrix-free strategy, which for such space discretization
provides similar CPU times to that of a matrix-based one, allows to save almost the 40%
of the memory footprint, since the factorization of the iteration matrix can be efficiently
performed in place. As regards the use of pMG-MF preconditioners, two strategies em-
ploying three and four levels (LVL) have been assessed. In both the cases, on the coarsest
level k = 1, an Additive Schwartz preconditioner and 30 GMRES iterations are employed,
while the other levels (k = 2, 6 and k = 2, 4, 6 for the three and four levels, respectively)
are smoothed using 8 iterations of EWBJ-preconditioned GMRES smoothers. Note that
the use of an Additive Schwartz on the coarsest level increase the coupling between the
domain partitions at a low computational cost. The values reported in brackets have been
obtained by lagging the Ai matrices and all the preconditioners of the multigrids levels
for three consecutive time steps. Such operation, thanks to the matrix free approach [11],
does not influence the accuracy of the computation. It can be seen the pMG-MF precon-
ditioner allows (i) up to an 85% memory footprint reduction if compared to the reference
strategy, thanks to the use of block-diagonal smoothers on the finest level; (ii) a strong
reduction in the average number of GMRES iterations and (iii) up to a 66% reduction
in the CPU time. It is worth pointing out that the use of a four-level strategy, which
increases only slightly the memory allocation but reduces the CPU time and the number
of iterations, performs comparably to the three-level one when the Jacobian lagging is
employed, which demonstrate that the use of a very high number of multigrid levels does
not seem particularly important from the efficiency point of view in a matrix-free context.
In other words, since the Jacobian evaluation is CPU demanding especially for very high
order of polynomial approximations, it can be convenient to freeze its evaluation for more
than a time step. In this circumstance, it is not guaranteed that the use of an updated
and more effective preconditioner operator in every time step results in a CPU advantage
due to the higher assembly costs.

3 RESULTS

In this section, a preliminary assessment of the main features of recirculating flows un-
der different configurations by means of single-point statistics is reported. The parameters
of the simulations are reported in table 2. For all the flow cases, an unperturbed free-
stream velocity U∞ is applied at the inlet and a pressure condition is used at the outlet.
On the other hand, in the top and bottom boundaries a far field boundary condition is
used for the flow cases run1 and run2 while a symmetry conditions is applied for run3 and

Table 2: Parameters of the simulations

Case Re Lx Dx ×Dy ×Dz Nelements k ∆t
run1 3000 35 112× 50× 5 47670 6 0.05
run2 3000 20 36× 50× 5 29538 6 0.05
run3 3450 12 28× 17× 2 38320 6 0.05
run4 3450 12 28× 17× 2 18820 6 0.05
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run4. Finally a periodic boundary condition is applied in the spanwise direction. After
reaching a statistical steady state, the simulations have been run for a time of the order
of 300 characteristic time scales D/U∞ in order to obtain a number of sampling sufficient
for statistical convergence. For the symmetry of the problem, statistics are computed by
averaging in time and in the spanwise direction.

3.1 Friction and pressure coefficients

We start the analysis by considering the behaviour of the friction coefficient, cf . As
shown in figure 2(a), the behaviour of the friction coefficient highlights significant differ-
ences between the different flows. The general trend of the friction coefficient conforms
with the presence of a large scale recirculating region cf < 0 followed by an attached
forward boundary layer cf > 0. The main differences between the different flow configu-
rations come from the length of the main recirculating region and from the presence or
not of a second smaller recirculating flow within it.

Starting from the last consideration, we observe that for the flow cases with right angle
corners, run1 and run2, the near-wall reverse flow induced by the large scale recirculating
bubble, detaches forming a secondary smaller recirculation that can be recognized by the
presence of positive values of friction for streamwise locations within the main separation
bubble. In both cases, the secondary bubble starts around x = 1.04, however its length `sv
is found to be slightly larger for the case of a finite plate run1, see table 3. This secondary
flow is not observed for the cases with circular leading-edge corner, run3 and run4. As
shown in Cimarelli et al. [7], the presence of the secondary vortex is a result of adverse
pressure gradient phenomena which induce the separation of the reverse boundary layer
produced by the main recirculating flow. Accordingly, as shown in figure 2(b), the pressure
coefficient highlights a negative streamwise gradient, dcp/dx < 0, only for the flow cases
with right angle corners run1 and run2. Hence, only for these two flow cases, the reverse
flow induced by the main recirculating bubble experiences an adverse pressure gradient.
As a consequence, the reverse boundary layer detaches, thus leading to a secondary smaller
recirculating region.

As far as it concerns the length of the main recirculating region, we observe that all
the flow cases behave in a different way. In particular, as also shown in table 3, the
reattachment length goes from the smallest value, xR = 3.88, for the flow case run3 to
the largest one, xR = 4.81, for the case run2. The reattachment length strongly depends
on the turbulence levels created in the leading-edge shear layer which in turn are affected
by the geometry of the leading-edge corner and by the presence/absence of trailing edge
vortex shedding mechanisms as unequivocally shown here in quantitative terms.

Table 3: Reattachment lengths

run1 run2 run3 run4
xR 4.02 4.81 3.88 4.32
`sv 0.85 0.94 - -
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Figure 2: Streamnwise behaviour of the friction (a), pressure (b) coefficients in the different flow con-
figurations simulated. The behaviour of the standard deviation of the pressure coefficient is also shown
in (c).

It is worth pointing out that, as expected, in the upstream portion of the flat plates,
the behaviour of the friction coefficient appears to be strongly affected by the geometry of
the leading edge independently of the presence or not of a trailing edge flow separation.
Indeed, similar behaviours are observed for the same geometry. On the other hand, while
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moving downstream, the effect of the presence of the trailing-edge separation becomes
relevant and a departure of the behaviour of the friction coefficient for the cases run1
and run2 is observed. Interestingly, when comparing cases run3 and run4, one would
expect that the effect of the presence/absence of a flow separation in the two sides of the
plate is more relevant in the region close to the leading edge where the top and bottom
sides of the plate communicate. However, as shown here in quantitative terms, the effect
of the presence/absence of a flow separation in the two sides of the plate is negligible in
the upstream part of the plate where the friction coefficient shows similar behaviour and
a significant departure is observed only downstream. The same reasoning apply when
comparing the downstream behaviour of the friction coefficient of flow cases run2 and
run3. Indeed, we would expect that the effect of the different leading-edge geometry is
retained only in the upstream part of the plate. On the contrary, the differences are
observed also downstream.

Let us consider now the behaviour of the pressure coefficient cp and of its standard
deviation c′p shown in figure 2(b) and (c), respectively. As for the friction coefficient
analysed so far, the leading-edge geometry is the most significant parameter influencing
the upstream behaviour of the recirculating flow. Indeed, we observe that, both in terms
of average and fluctuating intensity, the pressure field behaves similarly for the flow cases
run1 /run2 and run3 /run4. It consists in a flat behaviour of cp associated with small value
of c′p for the circular leading-edge geometry. On the other hand, for right-angle corners,
the pressure field cp slightly decreases moving downstream the leading edge, dcp/dx < 0,
and the associated fluctuations, c′p are more intense. Let us recall that, as previously
shown when analysing the behaviour of the friction coefficient, the presence or not of a
negative pressure gradient, dcp/dx < 0, is at the basis of the formation or not of the
secondary recirculating flow.

By moving downstream, the pressure recovery show significant differences which are
particularly interesting for the flow cases without trailing edge separation, i.e. run2,
run3 and run4. Indeed, these flow cases differentiate for the geometry of the leading
edge corner and for the presence or not of flow separation in the two sides of the plate.
Such a differences are physically located upstream but their effects are significant also in
the pressure recovery region downstream the reattachment. An homogenization of the
pressure distribution between the different cases is recovered for x > 7 only for cp since
the intensity of the fluctuations c′p remain different for longer distances.

3.2 Single-point statistics

The behaviour of the mean velocity field for the different flow configurations is shown
in figure 3 with streamlines. We observe that the main recirculating region is strongly
affected by the shape of the leading-edge corner. Indeed, sharp leading-edge corners, run1
and run2, are found to produce thicker recirculating bubbles with respect to circular
leading-edge corners. The effect of the trailing-edge separation consists in a reduction
of the length of the recirculating zone, compare run1 and run2. On the other hand,
by comparing run3 and run4, we observe that the effect of the presence or not of a
separating flow in the two sides of the plate is less significant as far as it concerns the
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Figure 3: Mean velocity field streamlines and isocontour of turbulent kinetic energy. (a) run1. (b) run2.
(c) run3. (d) run4.

height of the recirculating flow while a significant streamwise elongation is observed, see
also the reattachment lengths reported in table 3.

Interesting insights can be argued by analysing the behaviour of the turbulent kinetic
energy for the different flow configurations shown with isocontours in figure 3. It is evident
how the presence of a sharp leading-edge corners, beside producing a thicker flow recir-
culation, leads to a faster transition to turbulence. In other words, the initially laminar
leading-edge shear layer is found to develop instabilities and turbulence fluctuations, for
streamwise locations which, for the case of sharp leading-edge corners, are significantly
upstream with respect to smooth corners, compare the turbulent intensity levels of cases
run1 and run2 to the cases run3 and run4. This upstream shift of the main instabilities
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giving rise to turbulent transition is associated also to more intense turbulent fluctuations
. Indeed, for all the flow cases, the most intense fluctuations are reached in the shedding
region of the main recirculating bubble but, as highlighted by the higher levels of isocon-
tours, these maxima are stronger for flow with sharp leading-edge corners with respect
to those with smooth corners. Beside the smaller extension of the induced recirculation,
the effect of the flow separation at the trailing-edge is also to increase the intensity of the
turbulent fluctuations, compare run1 to run2.

In closing this section, let us focus the analysis on the effect of the presence or not
of a flow separation in the two sides of the plate, cases run3 and run4. Indeed, as
already stated, the artificial removal of the possible interactions between the two sides
of the plate leads to significantly longer recirculating regions. As it is well known from
well-established literature results, see e.g. [18], longer recirculating regions are commonly
associated with lower turbulence levels. However, as shown here in quantitative terms,
the longer recirculating region of the flow case run4 is associated with roughly the same
levels of turbulent intensities of the flow case run3. Arguably, we conjecture that such a
difference in the reattachment length is related with the presence or not of a large scale
unsteadiness which takes the form of a flapping of the main recirculating bubble. The
resulting enlargement and shrinkage of the main recirculation, once averaged, leads to
a shorter mean reattachment length. The investigation of such a phenomenon is left to
future works. However, let us point out that, if confirmed, the well-known very large scale
unsteadiness could be explained as a phenomenon of connection between top and bottom
flow instabilities which give rise to a self-sustained feedback mechanisms in the form of a
flapping of the main recirculating bubble locked in phase opposition in the two sides of
the plate.

4 CONCLUSIONS

In the present work, we exploit the ability of numerical simulations to manipulate the
flow conditions in order to understand how geometrically relevant parameters influence
the behaviour of separating and reattaching flows. To this aim we make use and prove the
reliability of high-order Discontinuous Galerkin methods for the solution of transitional
separating and reattaching phenomena.

The statistical analysis of the results reveals the role played by the leading-edge corner
geometry. It is found that sharp leading-edge corners give rise to a thicker recirculating
bubble and to the appearance of a secondary recirculating flow within it. This secondary
motion is associated with the presence of a negative streamwise pressure gradient peculiar
of sharp leading-edge corners. The picture is the following. The reverse flow induced by
the main recirculating bubble experience an adverse pressure gradient and detaches thus
giving rise to the secondary recirculation. The effects of the geometry of the leading-edge
corner are analysed also in terms of turbulent fluctuations which are found to be more
intense in the case of sharp corners. In particular, sharp corners are associated with an
amplification of the instabilities of the leading-edge shear layer thus giving rise to a faster
transition to turbulence.

The effect of the trailing-edge separation has been also analysed. It is found that
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a flow separation at the trailing-edge induces a smaller flow recirculation probably due
to the fact that the flow exploit more intense turbulent fluctuations. We argue that this
behaviour could be the result of a coupling phenomenon between shedding of vortices from
the recirculating bubble and from the trailing-edge which gives rise to a self-sustaining
mechanism. To support this, we refer to a future work where also frequency spectra are
taken into consideration.

Finally a preliminary study of the origin of the very-large scale unsteadiness of separat-
ing and reattaching flow is also reported. By analysing data from a simulation of the flow
around half-flat plate with circular leading-edge corner, we are able to avoid the presence
of a possible very large scale phenomenon of coupling of the flow separations occurring in
the two sides of the plate. We observe that the inhibition of such a process leads to longer
recirculating regions but retaining at the same time the same levels of turbulent intensity.
Since, it is well-known that longer recirculating regions are associated with lower turbu-
lence levels, we conjecture that the origin of such a difference comes from the presence of
very long period of enlargement and shrinking of the main flow recirculation which leads
to a shorter reattachment length on average. If confirmed, this phenomenon could take
origin solely from a very large scale unsteadiness coupling the flow separation in the two
sides of the plate. However, also in this case, we refer to a future work where frequency
spectra are taken into consideration in order to provide more supporting evidence of the
phenomenon.
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