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Abstract. Slow combustion is considered under the assumption of an infinitely thin
flame front. We present a tracking method which fulfills the jump conditions at the flame
front by using marker points and a singular volumetric flux source at the interface. Due
to the low Mach number assumption, Helmholtz decomposition of the velocity field is
used to solve two easier sub-problems. Comparison of the flame shape with level set CFD
solutions yields good agreement.

1 INTRODUCTION

Numerical investigation of combustion and flame propagation is a complex problem on
multiple scales. One has to account for chemical reactions, gas dynamics and interface
tracking in a highly non-steady problem. However, many industries require a reliable and
good prediction of the behaviour of flammable fluids. As an example, the design of dust
explosion suppression devices requires knowledge of the development of the flame front
and pressure–time evolution.

Two major levels of modelling detail can be distinguished: (I) accounting for chemical
reactions, kinetics and different species combined with computational fluid dynamics, and
(II) models which reduce the flame to an infinitely thin interface. The second approach,
called flame sheet model, is used here.

Darrieus[1] and Landau[2] were one of the first to use a gasdynamic model for flame
propagation, treating the flame front as a discontinuity. However, their model is uncondi-
tionally unstable which contradicts observation. Thus, Markstein[3] added a postulated
stabilisation mechanism to better agree with experiments. More complex models for the
flame front description were developed by Shivashinsky[4], Matalon and Matkowsky[5]
and Class et al.[6]. Here, we use the Markstein model because of its simplicity.

All simulations which use the flame sheet model require a method to keep track of the
flame front. Current state of the art are level-set or volume of fluid methods. Both use
a scalar quantity which is transported with the flame front to describe the position of
the interface. Both require solving at least one additional partial differential equation.
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Furthermore, the exact position of the flame front is unknown. Our approach is to track
the flame front with marker points which move with the front. The goal is to simplify the
flame front tracking to allow for fast predictions of flame propagation.

2 PHYSICAL MODEL

We consider premixed combustion of an ideal gas. Our focus is on closed geometries
of arbitrary shape. However, the method described here is equally valid for any slow
combustion. Therefore, we will keep the description as general as possible.

unburnt gas, initially at rest

burnt gas

flame front

Figure 1: A flame front moves into unburnt gas

2.1 Governing Equations

A flame front separates unburnt, fresh gas from already burnt gas (Figure 1). In both
phases, conservation of mass, momentum and energy have to be fulfilled. We neglect
friction and heat conduction. The tilde indicates that a quantity has a dimension:

∂%̃

∂t̃
+ ∇̃ · (%̃ũ) = 0̃, (1)

∂ (%̃ũ)

∂t̃
+ ∇̃ · (%̃ũũ) = −∇̃p̃, (2)

∂ (%̃ (ẽ+ ũ2/2))

∂t̃
+ ∇̃ ·

(
%̃
(
ẽ+ ũ2/2

)
ũ
)

= −∇̃ · (p̃ũ) , (3)

with time t̃, density %̃, velocity ũ, pressure p̃ and internal energy density ẽ.
The ideal gas equation is assumed to be valid:

p̃ = %̃R̃T̃ . (4)

The internal energy density ẽu includes the reaction enthalpy∆h̃f . γ is the ratio of specific
heats at constant pressure and volume, respectively, c̃p/c̃v:

ẽu =
p̃u/%̃u
γ − 1

+∆h̃f . (5)

At t = t0, the gas is at rest and has a uniform initial density %̃i and pressure p̃i.
The jump conditions at the interface state that mass, momentum and energy flux are
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conserved. Index b denotes quantities at the flame front in the burnt gas, index u in the
unburnt gas at the flame front x̃ = x̃f :

%̃u (ũu − ũf ) · nf = %̃b (ũb − ũf ) · nf , (6)
(%̃uũu (ũu − ũf ) + p̃uI) · nf = (%̃bũb (ũb − ũf ) + p̃bI) · nf , (7)(

%̃u (ũu − ũf )
(
ẽu + ũ2u/2

)
+ p̃uũu

)
· nf =

(
%̃b (ũb − ũf )

(
ẽb + ũ2b/2

)
+ p̃bũb

)
· nf . (8)

The flame front velocity ũf is the sum of the velocity of the unburnt gas ũu and the
laminar flame speed in normal direction −s̃Lnf :

ũf =
dx̃f

dt̃
= ũu − s̃Lnf . (9)

where s̃L is the laminar flame speed defined as the normal velocity of the flame front with
respect to the unburnt gas at the flame front. Following [3], we assume s̃L depends on
the local curvature κ̃ of the flame front and the so–called Markstein length l̃Ma:

s̃L = s̃L,0

(
1− κ̃l̃Ma

)
. (10)

The Markstein length is assumed to be of the order of the flame thickness[3] and s̃L,0 is
constant.

x̃f

flame front
tangential plane

%̃b, p̃b, ẽb

ũb

%̃u, p̃u, ẽu

ũu

ũf =
dx̃f

dt̃

−s̃Lnf

nf

burnt unburnt

(a) Jump of velocity

flame front

x̃

tangential plane

n

ũu
−nũnu

ũt
u,b

t1ũ
t1
u,b

t2ũ
t2
u,b

ũb

nũnb

(b) Tangential plane and normal direction

Figure 2: Illustration of the jump conditions at the flame front

2.2 Stability of the Flame Front

For the linear stability analysis, a plane flame front is assumed. The dispersion relation
for the growth rate Ω̃ of a disturbance with wavenumber k̃ reads as[3, 7]:

(σ + 1) Ω̃2 + 2
(

1 + k̃l̃Ma

)
σk̃s̃L,0Ω̃ −

(
σ − 1− 2l̃Maσk̃

)
σk̃2s̃2L,0 = 0̃. (11)
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where σ is the expansion ratio, defined as %̃u/%̃b. In case of isobaric conditions with
uniform temperature in the unburnt gas, it is constant.

To obtain the critical wavenumber k̃c we set Ω̃ = 0̃:

k̃c =
σ − 1

2l̃Maσ
. (12)

The flame front is stable for perturbations with a wavenumber k̃ > k̃c, and unstable
for k̃ < k̃c. Thus, the stabilisation mechanism acts as a low-pass filter. Setting l̃Ma = 0,
the laminar flame velocity s̃L is constant and the flame front is unconditionally unstable
for all perturbation wavelengths (Darrieus–Landau instability).

2.3 Non-dimensional Formulation

We introduce characteristic values to obtain a non-dimensional formulation. Pressure
and density are scaled with their initial values. s̃L,0 is the characteristic velocity, and
the characteristic length L̃ is problem-dependent, e.g. vessel diameter or channel width.
We define ε = %̃is̃

2
L,0/p̃i = s̃2L,0/c̃

2
i γ = Ma2

ref/γ, proportional to the square of a reference
Mach number Ma = s̃L,0/c̃i, with the speed of sound at initial conditions c̃i. We get for
Equations (1) to (3):

∂%

∂t
+∇ · (%u) = 0, (13)

ε

(
∂ (%u)

∂t
+∇ · (%uu)

)
= −∇p, (14)

∂ (% (e+ εu2/2))

∂t
+∇ ·

(
%u
(
e+ εu2/2

))
= −∇ · (pu) , (15)

and jump conditions, Equations (6) to (8):
%u (1− κlMa) = %b

(
unf − unb

)
, (16)

ε (1− κlMa) %uu
n
u + pu = pb + ε (1− κlMa) %bu

n
b , (17)

utu = utb, (18)
pu/%u
γ − 1

+∆hf + εu2u/2−
puu

n
u

%u (1− κlMa)
=
pb/%b
γ − 1

+ εu2b/2−
pbu

n
b

%u (1− κlMa)
. (19)

2.4 Expansion for Small Mach Numbers

We assume that at all times, the maximum speed of the fluid is much smaller than the
local speed of sound. Thus, we expand all quantities in terms of small ε� 1, e.g.:

% = %0 + ε%1 + . . . .

For the governing Equations (13) to (15), we obtain in leading order:
1

%0

D%0
Dt

+∇ · u0 = 0, (20)

∇p0 = 0, (21)
γ

γ − 1

(
1

p0

Dp0
Dt
− 1

%0

D%0
Dt

)
=

1

p0

∂p0
∂t

, (22)
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and in second order for Equation (14):
1

%0

Du0

Dt
= −∇p1. (23)

The leading order jump conditions, Equations (16) to (19), at the flame front read as:

%u,0 (1− κlMa) = %b,0
(
unf,0 − unb,0

)
, (24)

pu,0 = pb,0, (25)
utu,0 = utb,0, (26)

1

γ − 1

(
%u,0
%b,0
− pu,0
pb,0

)
= ∆hf

%u,0
pb,0

+ (1− κlMa)
−1
(
unb,0 −

pu,0
pb,0

unu,0

)
. (27)

From Equations (21) and (25), we conclude that the leading order pressure is time-
dependent only. We rename p0 = p̄ (thermodynamic pressure) and p1 = p′ (pressure
correction). In the following, all other quantities are of leading order.

2.5 Decomposition of the Velocity Field

We decompose the velocity field in an irrotational∇ϕ and a divergence-free part∇×ψ:
u = ∇×ψ +∇ϕ. (28)

The scalar potential ϕ is governed by:

∇2ϕ = ∇ · u = −1

%

D%

Dt
= −1

γ

1

p̄

dp̄

dt
, (29)

with one possible particulate solution ϕp:

ϕp = −x
2

2

1

γ

1

p̄

dp̄

dt
. (30)

At the flame front, the homogeneous solution ϕh is continuous, but its normal gradient
has a jump. For the vector potential ψ, setting ∇ ·ψ = 0 w.l.o.g., we get:

∇2ψ = −∇× u = −ω. (31)

The transport equation for vorticity ω = ∇ × u is obtained by taking the curl of
Equation (23):

Dω

Dt
= ω · ∇u− ω∇ · u+

1

%2
∇%×∇p′ = ω · ∇u− ω∇ · u+

1

%

Du

Dt
×∇%. (32)

The decomposition (28) allows us to solve two easier sub-problems: finding ϕ and
ψ. Since we already have a particulate solution to the Poisson Equation (29), we use
a boundary element method (panel method[8, 9]) to get the homogeneous solution ϕh.
Here, vorticity and vector potential are not considered.

In the unburnt gas, the vorticity always vanishes, ω = 0. However, the vorticity
generated by the flame front has an influence on the velocity field in the unburnt fluid.
The thermodynamic pressure p̄ is a function of time only. Since entropy is conserved
(except at the flame front), the density in the unburnt is also time-dependent only.
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3 FLAME FRONT TRACKING

The flame front is represented by N marker points xf,i, i = 1, . . . , N (Figure 3a). They
move with the flame front according to Equation (9). To fulfill the jump condition for
the normal velocity, we prescribe a singular source distribution along the flame front.

flame front

flame front panels

unburnt

burnt

xf,i
xf,i+1

nf,i

(a)

unburnt

burnt

xf,i
xf,i+1

uu,i−1
uu,iuint

u,i

(b)

Figure 3: (a) Discretisation of the flame front, (b) velocity interpolation

3.1 Panel Method

We adapt the panel method described in [8, 9]. The jump of normal velocity ∆uni at
the flame front is known and equal to the source strength qf of the flame front:[

∇ϕh(xf (s)) · nf (s)
]

= qf (s) = ∆un(s) =
γ − 1

γ
(1− κ(s)lMa)∆hf p̄

(1−γ)/γ. (33)

s is the arc length across the flame front and [b] denotes the jump of a quantity b when
crossing the front. When discretised, the jump of normal velocity across a panel i is
time-dependent only, ∆uni = f(t).

3.2 Moving the Flame Front

At every time step, we have to move the flame front points. The discretised kinematic
condition for each flame front point xf,i for the time step (n+ 1) reads as:

xn+1
f,i = xnf,i +∆tunf,i. (34)

The velocity uu induced by the panel method is singular at each panel edge, i.e. marker
point. To obtain a smooth approximate velocity field at the marker points, we interpolate
the velocity uint

u,i using two adjacent panels i and i− 1, see Figure 3b:

uint
u,i =

liuu,i−1 + li−1uu,i
li + li−1

. (35)

where li is the length of panel i and uu,i is the velocity of the unburnt gas, evaluated
at centre of panel i.

6



Clemens Gößnitzer and Herbert Steinrück

In order to be able to simulate the propagation of a partially unstable flame front,
we iteratively reseed the marker points in each time step: Panels that are too short
(Figure 4a) or have a too sharp edge (Figure 4b) are cut out, panels that are too long
(Figure 4c) are split. Two parameters have to be specified: the average length lavg of one
panel, where the actual length of each panel has to lie between 0.5lavg and 2lavg and the
minimum angle αmin between two panels.

before

l < 0.5lavg

after

(a) Panel too short

before

α < αmin

after

(b) Panel too sharp

before

l > 2lavg

after

(c) Panel too long

Figure 4: Stabilisation of the flame front moving algorithm

4 APPLICATIONS

We consider the following two-dimensional problems, Figure 5: (I) a plane flame front
in an infinite channel, and (II) combustion in a closed vessel. We represent the two-
dimensional space by complex numbers z = x + iy, where x = (x, y). The complex
velocity is U = u− iv, with u = (u, v).

4.1 Infinite Channel

The flame front moves into quiescent, unburnt gas in an infinitely long channel (Fig-
ure 5a). At the walls, located at zw(y) = ±1 + iy, periodic boundary conditions are
applied. The thermodynamic pressure p̄ and the expansion ratio σ are constant and the
unburnt gas has a uniform temperature distribution.

To fulfill the boundary conditions, we have to apply the method of mirrored panels
as outlined in [10, 11]. For the complex velocity Up at point z induced by a single panel
located between two points z1 and z2, we get:

Up(z) =
q

2π

||z1 − z2||
z1 − z2

ln

(
sin(π/2 (z − z2))
sin(π/2 (z − z1))

)
. (36)

The total velocity U induced by all panels is the sum of all panel contributions Up,i.

4.2 Combustion in a Closed Vessel

A closed vessel is represented by fixed panels (Figure 5b) where the boundary condition
of a vanishing normal velocity has to be satisfied. The pressure rises significantly. The
integral equation for the pressure change reads as:
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Figure 5: Flame front in (a) an infinite channel and (b) inside a closed vessel

dp̄

dt
=
γp̄

Vv

∫
f.f.

(unu − unb ) dO, (37)

where Vv is the volume of the vessel per unit length. Integration is done along the
flame front (f.f.). The complex velocity Up at point z induced by a single panel between
points z1 and z2 is:

Up(z) =
q

2π

||z1 − z2||
z1 − z2

ln

(
z − z2
z − z1

)
. (38)

We assume that the vessel wall is adiabatic. Once the flame front touches the wall,
the assumption of no heat loss to the surroundings becomes invalid. Thus, we stop the
simulation.

5 RESULTS

Although vorticity and vector potential are neglected, the following results illustrate
the potential and performance of the presented front tracking method.

5.1 Infinite Channel

Figure 6 shows the stabilisation mechanism due to the Markstein length, with param-
eters lMa = 0.0416, σ = 6, kc = 10, lavg = 0.005, ∆t = 10−5 and αmin = 120◦.

At t = 0, the flame front is sinusoidal with an amplitude a = 0.01. If the initial
wavenumber ki is smaller than the critical wavenumber kc (Figure 6a), the distortion will
grow in amplitude, see t = 0 to t = 0.4. For t = 0.8 and t = 1.0, low wavenumber
instabilities with a larger growth rate than the initial wavenumber develop and become
visible.
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Figure 6: Planar flame front in a channel, consecutive time intervals from top to bottom with ∆t = 0.2

If the initial wavenumber is higher than the critical wavenumber (Figure 6b), the
distortion is damped, t = 0 to t = 0.2. At t = 0.4, low wavenumber instabilities start to
grow. At t = 0.6, coalescence of instabilities is visible. For t = 0.8, unstable modes have
developed.

An unperturbed flame front moves with velocity v = −1. If it is wrinkled, it is consid-
erably faster. E.g., compare the location of the flame front for t = 0.2 and t = 0.4 for the
wrinkled (left) and almost undisturbed (right) flame front.

5.2 Combustion in a Closed Vessel

Figure 7 shows the flame front inside a rectangular vessel for different times, with
parameters ∆hf = 20, γ = 1.4, lMa = 0.005, lavg = 0.002 and ∆t = 10−6. The vessel has
a height to width ratio of two to three with rounded corners.

The reaction enthalpy ∆hf is chosen such, that the end pressure, i.e. the pressure
after total adiabatic combustion, is about pe = 9, to agree with bomb calorimeter dust
explosion experiments[12]. Note, the pressure at the end of the simulation (t = 0.1577)
shown in Figure 8 is much less than 9, since a large portion of the gas is not burnt yet.

At t = 0, the flame front is a circle with radius ri = 10−2 (Figure 7). Note, ri must be
larger than the Markstein length ri > lMa, because otherwise the flame would not move.

The flame stays circular until about t = 0.03 since the walls of the vessel are still far
away. Thus, their influence on the flame front is small. At t = 0.06, first deviations from
the initial shape are visible and the boundaries begin to have an impact on the interface.
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Figure 7: Flame front position for confined combustion in a rectangular vessel

Once the flame touches the wall, t = 0.1577, the simulation stops.
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Figure 8: Pressure rise for confined combustion in a rectangular vessel

Figure 8 shows the evolution of the pressure in time. Since the pressure change depends
on the current pressure, p̄ increases exponentially, cf. Equation (37).

6 DISCUSSION

A new method to track the flame front of slow combustion has been developed and
successfully implemented. The implementation shows good performance and uses modern
parallelisation techniques to enable fast simulations.

The evolution of an initially slightly perturbed flame front in an infinite channel is in
good qualitative agreement with CFD results using a level-set method, compare Figure 6a,
time t = 0.2 with Figure 10 from [7]. The stability limit from our simulations match those
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from [3, 7]. We obtain a similar shape of a single wrinkle. However, the method proposed
here is simpler and faster.

For combustion in a close vessel, the Markstein length was large enough to damp all
instabilities. Additionally, the pressure rise of combustion in a vessel is in good agreement
with experiments[12, 13].

Numerical dissipation of the front tracking method presented here is considerably lower
than that of other methods. Our method resolves the flame front as discontinuity. In level-
set and front tracking methods, the interface is approximated by finite-sized cells which
do not necessarily coincide with the flame front shape. Thus, it is smeared over multiple
mesh cells.

In addition to the model instability, a numerical instability arises due to the low nu-
merical dissipation of the proposed front tracking method. If not controlled, this leads
to unphysical behaviour of the flame front. Self-intersections of the flame front can oc-
cur. Our stabilisation algorithm successfully suppresses the numerical instabilities of the
moving algorithm, with the right choice of parameters.

The minimal angle between two neighbouring panels αmin and the average panel length
lavg need to be carefully adjusted. Too small values of αmin would allow overturning of
neighbouring flame front panels. For sufficiently low average panel lengths, the angle of
a single wrinkle is smaller than αmin. Here, we chose αmin such, that the front moving
algorithm remains stable. lavg was chosen that all unstable wavelengths can be captured
with good accuracy and no aliasing.

Currently, the velocity induced by vorticity generation is neglected. The implementa-
tion is current work in progress. For the planar flame front, vorticity can only be generated
at the flame front. There is no density gradient in the burnt gas and the right-hand side
of the vorticity transport Equation (32) is identical to zero. In confined combustion, there
is a non-vanishing divergence of the velocity field and a significant density gradient in the
burnt gas[14]. Thus, the vorticity of a material element increases even after passing the
flame front.

For simple flame models, the front tracking method described here leads to simula-
tion results comparable to literature in short simulation times. We plan to extend our
implementation to account for rotational symmetric geometries and different boundary
conditions at the vessel wall.
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