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Abstract. Quasi-trivial (QT) sequences are a class of lamination stacks for which, in
the framework of Classical Laminate Theory (CLT), the properties of uncoupling and/or
homogeneity are verified in a closed-form solution [1]. These sequences have received great
attention from the scientific community as they have proved to be an extremely powerful
tool for the design and optimization of composite laminates.

Nevertheless, two main reasons limit their adoption: first, to find QT sequences, a
complex algorithm is required; second, calculations become computationally intensive
for long QT sequences, thus limiting the maximum number of plies attainable. This
constrains the use of QT stacks to applications involving only thin laminates.

In order to exploit QT stacks for thick laminates new tools are proposed. Firstly,
a new and more efficient algorithm for finding QT stacking sequences is developed and
an original procedure is devised to effectively code it. The proposed algorithm finds a
greater number of QT solutions, with respect to those given in [1]. Additionally, analytical
relationships to obtain new QT sequences by superposition of known QT sequences are
presented in [2]. Thanks to this new class of closed-form solutions, laminates can be
designed using QT stacking sequences without limitations on the maximum number of
plies.

The results presented in this work open new possibilities for the design and optimisation
of thick laminates. In addition, laminates with special requirements may be designed by
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superposition of QT stacks, thus reaching specific design goals that cannot otherwise be
met.

1 INTRODUCTION

Advanced composite materials are extensively used in high-end applications, thanks to
their extraordinary specific properties. However, part of this success is also due to the
possibility they offer of being tailored to the specific application required. This allows
overcoming some limitations related to metallic materials, but at the same time makes
the design process quite cumbersome.

When dealing with the design of composite structures, laminates with identical plies are
often used. The design of such structures involves both geometric variables and laminate
stack parameters. These latter are the number of plies and their orientation angles. A ma-
jor difficulty during design is anisotropy, which affects material behaviour at mesoscopic
and macroscopic scales. In this regard, engineers often use simplifying hypotheses/rules to
get some desired properties (e.g. symmetric stacks to get membrane/bending uncoupling,
balanced ones to get membrane orthotropy, etc.). Unluckily, these design rules drastically
reduce the design space and may lead to cut out classes of stacks that could potentially
be optimum solutions for the problem at hand.

In this context, the introduction of Quasi-Trivial (QT) sequences in 2001 by Vannucci
and Verchery [1] represented a major improvement. In [1], the authors utilised the polar
formalism [3], in the framework of the Classical Laminate Theory (CLT), to derive the
equations defining the general conditions for membrane-bending uncoupling and quasi-
homogeneity (i.e. uncoupling plus equal behaviour in terms of normalised membrane and
bending stiffness tensors) for a laminate made of identical plies. Indeed, QT stacking
sequences are a class of exact solutions to these equations. For this reason, QT solutions
have received great attention in the field of laminates design and optimisation. In [4] the
authors analysed the problem of superposing laminates by means of the polar formalism
and concluded that, generally speaking, the superposition of two QT stacks does not
give rise to another QT one. In [5], Vannucci et al. proved that one can obtain fully
orthotropic laminates by using QT quasi-homogeneous stacks with angle-ply orientations.
These sequences were used to search optimum flexural solutions. Jibawy et al. [6] made
use of the same idea within an optimisation procedure, in order to constrain the solutions
to be quasi-homogeneous orthotropic ones. In [7], Montemurro and Catapano utilised QT
quasi-homogeneous stacks in the framework of the multi-scale two-level optimisation of
variable angle tow laminates.

The obstacles to a larger diffusion of QT sequences are that, firstly, only few sequences
are available in the literature, while to obtain a complete database a complex combina-
torial algorithm is required and no exhaustive guidelines are provided for that; secondly,
such an algorithm may find QT sequences up to a limited total number of plies, due to
computational limits.

The aim of this work is to contribute toward the solution of these problems. There-
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fore, the steps for the implementation of an efficient algorithm to find QT sequences are
explained.

2 FUNDAMENTALS OF QUASI-TRIVIAL SOLUTIONS

Consider a multilayer plate composed of n plies, Figure 1. Axes x and y lay on the lam-
inate middle plane, axis z is perpendicular to this plane. The CLT gives the constitutive
relationship between generalised forces and generalised strains of the middle plane:

N = Aε0 + Bχ , (1)

M = Bε0 + Dχ .

Figure 1: Laminate stack parameters and notation.

In Eq. (1), N, M, ε0 and χ are the vectors of in-plane resultant forces and bending
moments per unit length, in-plane strains and curvatures of the middle plane of the
laminate, respectively. A, B and D are the membrane, membrane/bending coupling and
bending stiffness matrices, respectively. For a laminate with identical plies it stands:

A =
h

n

n∑
k=1

Q(δk) , B =
1

2

h2

n2

n∑
k=1

bkQ(δk) , D =
1

12

h3

n3

n∑
k=1

dkQ(δk) . (2)

In Eq. (2) Qk is the reduced stiffness matrix of the k-th ply, while δk is its orientation
angle. Coefficients bk and dk depend on the position k of the ply within the stack:

bk = 2k − n− 1 , (3)

dk = 12k(k − n− 1) + 4 + 3n(n+ 2) . (4)

For convenience, normalised stiffness matrices are defined as follows:

A∗ =
A

h
, B∗ = 2

B

h2
, D∗ = 12

D

h3
. (5)

In addition, it is possible to define the laminate homogeneity matrix:

C = A∗ −D∗ , (6)

which measures the differences between normalised membrane and bending behaviours.
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A laminate is said to be uncoupled if:

B = 0 , (7)

while it is said homogeneous if:

C = 0 (8)

Finally a laminate is quasi-homogeneous if properties (7) and (8) hold simultaneously.
Vannucci and Verchery [1] used the polar formalism to represent matrices A∗, B∗, D∗

and C and to rewrite Eqs. (7) and (8) as, respectively:
n∑
k=1

bke
4iδk = 0,

n∑
k=1

bke
2iδk = 0, (9)

n∑
k=1

cke
4iδk = 0,

n∑
k=1

cke
2iδk = 0, (10)

where ck is a coefficient related to matrix C whose expression is:

ck = −2n2 − 12k(k − n− 1)− 4− 6n . (11)

We remark that coefficient bk varies linearly with the position index k of the ply, whilst
ck is symmetric with a parabolic variation with respect to k. This is shown in Fig. 2 for
the case of a laminate composed of 12 plies.

Figure 2: Trend of coefficient bk, (a), and ck, (b), with respect to the ply position index k.

In addition, the sum of each coefficient over the interval [1, n] is always null:
n∑
k=1

bk = 0,
n∑
k=1

ck = 0. (12)

To explain the concept of QT solutions, consider a laminate composed of n plies and
m different orientation angles. Let Gj be the set of plies sharing orientation angle θj, i.e.
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Gj = {k : δk = θj} . (13)

The union of these sets gives the set of position indexes of the laminate, k = 1, ..., n.
Expressions in Eqs. (9) and (10) can be split as sums over different sets Gj, j = 1, ...,m:

n∑
k=1

bke
4iδk =

m∑
j=1

e4iθj
∑
k∈Gj

bk ,

n∑
k=1

bke
2iδk =

m∑
j=1

e2iθj
∑
k∈Gj

bk , (14)

n∑
k=1

cke
4iδk =

m∑
j=1

e4iθj
∑
k∈Gj

ck ,

n∑
k=1

cke
2iδk =

m∑
j=1

e2iθj
∑
k∈Gj

ck . (15)

It results that if the sum of coefficients bk or ck is null over each set Gj, then uncoupling
or homogeneity requirements are satisfied, regardless the value of the orientation angle in
each group. In this context, a group of plies oriented at θj, for which:∑

k∈Gj

bk = 0, j = 1, ...,m , (16)

∑
k∈Gj

ck = 0 j = 1, ...,m , (17)

is called saturated group with respect to coefficients bk or ck, respectively; the related set
of indexes Gj is called saturated set. A QT stack is entirely composed of saturated groups.

Since a QT stack can satisfy uncoupling, homogeneity or quasi-homogeneity conditions
regardless to the value of the orientation angle characterising each saturated group, the
orientation angles can be chosen/optimised to satisfy further requirements (elastic prop-
erties along some prescribed directions, buckling behaviour, natural frequencies, etc.).

3 AN EFFICIENT ALGORITHM FOR QT SOLUTION SEARCH

In [1], Vannucci and Verchery described the concepts at the basis of quasit-trivial
solutions. The key is to find combinations of plies resulting in null sums of coefficient bk
and ck for each orientation group. To this aim, an algorithm needs to be implemented. By
means of an appropriate combinatorial strategy, sequences shall be generated and checked
to meet Eqs. (16) and/or (17). However, in [1], no details about the implementation were
given.

To this purpose, in this work a very general algorithm able to find QT solutions is
outlined in Algorithm 1. This algorithm, conceptually simple, may be extremely heavy
from a computational viewpoint. For example, when increasing the number of plies n of
the staking sequence, the number of sequences generated in step 2 increases exponentially.
This problem gives rise to two issues: the amount of memory necessary to stock all
sequences increases together with the time required to check every sequence during step
3. However, by introducing the following concepts, Algorithm 1 can be modified and
improved in order to reduce the computational costs. The new algorithm used to search
for QT solutions is named Improved QT stacks finder and its logical flow is summarised
in Algorithm 2.
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Algorithm 1 General QT stacks finder

1. Set inputs: n and m, n > m;
2. Generate sequences:

2.1 ∀ possible repartition of the n stack indexes among the m groups:
2.1.1 Generate a base sequence respecting the repartition;
2.1.2 Generate all permutations of the base sequence;
2.1.3 Eliminate repeated sequences;

3. Search for QT solutions:
3.1 Find sequences for which Eq. (16) is verified (uncoupled QT solutions);
3.2 Find sequences for which Eq. (17) is verified (homogeneous QT solutions);
3.3 Find sequences for which Eqs. (16) and (17) are verified (quasi-homogeneous QT

solutions);
4. Classify QT solutions found in step 3 in two groups:

4.1 QT dependent solutions that are discarded;
4.2 QT independent solutions that are stored.

(the concept of dependent and independent solution will be explained later)

1. Partial-sequences generation. Every sequence can be considered by a compo-
sition of two sets of layers, i.e. partial-sequences. The layers belonging to each of
these sets are associated to positive or negative values of bk and ck depending on
their evolution with respect to k, see Fig. 2.
Therefore, at step 2 of Algorithm 1, those sequences having an orientation group
appearing only in one of the two partial-sequences are not QT solutions. Indeed,
the concerned orientation group is not saturated with respect to the considered
coefficient. The process can then be carried out by generating two partial-sequences,
imposing that at least one ply of each group appears in both of them, and then
assembling the complete sequence. In this way, a significant amount of sequences
that cannot be QT solutions are neither generated nor checked, thus greatly reducing
computational cost. Furthermore, the use of partial-sequences reduces memory size
problems related to combinatorial calculations in the generation process. To be
remarked that in some particular cases coefficients bk and ck may be null for a given
ply position. These cases needs to be handled in the algorithm.

2. Mechanical independence. To understand this concept, consider sequences [1 2 3
3 2 1] and [3 2 1 1 2 3]: according to [1], these stacks are not mechanically independent
because one of them can be obtained from the other one by switching one or more
orientation groups. As QT solutions are exact solutions (with respect to a given
criterion) regardless to the orientation values, the two sequences are indeed the
same and only one has to be stored. To effectively suppress mechanically dependent
solutions, the problem was faced in the generation phase: only mechanically distinct
sequences are generated by the algorithm. This can be done also in the context of
half-sequences generation process, by considering that particular care must be taken
due to the fact that mechanical independence is to be obtained on the complete
sequence and not on each half-sequence.
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3. Mathematical independence. As an example, consider now sequences [1 2 2 2 2 1]
and [1 2 3 3 2 1]: according to [1], they are not mathematically distinct, i. e. the
first one can be obtained by assuming that the orientation of group 3 is equal to
orientation of group 2 in the second stack. Thus, the first sequence has a saturated
group (group 2) that is composed by two saturated sub-groups (groups 2 and 3 of
the second sequence). In general, a sequence with a higher number of groups can be
obtained from a mathematically dependent solution. On the other hand, a solution
is denoted as mathematically independent when no solutions with a higher number
of orientation groups can be derived from it. This leads to a major simplification
in the algorithm: QT solutions with a given number of orientation groups can be
obtained by mathematically dependent solution with a lower number of orientation
groups. This means that the search for QT solutions with m > 2 may be performed
directly into the raw (i.e. containing mathematically dependent solutions) set of
solutions for the case m = 2. Thus, firstly QT solutions are found for the case
m = 2. Then, the raw set of QT solutions is used as input for the growing loop (see
Algorithm 2): solutions are processed and separated into three groups:

(a) independent (i.e. both mechanically and mathematically distinct) ones, which
are stored;

(b) growable dependent ones, which will be grown to generate the raw set of so-
lutions with m = m∗ + 1 (input for the next cycle of the loop, see Algorithm
2);

(c) dependent ones.

To clarify the concept, consider the sequences [1 2 2 1 1 2 2 1] and [1 2 2 2 2 2 2 1]. They
are not mathematically distinct from the sequence [1 2 3 4 4 3 2 1]. Therefore, in the
growing loop, one of the two sequences will be discarded, while the other one will
be classified as a growable one.

Tables 1, 2 and 3 report, respectively, the number of uncoupled, homogeneous and
quasi-homogeneous QT solutions found in this study and in [1, 4], for comparison pur-
poses. Firstly, Algorithm 2 is able to find QT solutions with higher number of plies, n,
than in [1, 4]. Additionally, it is worth mentioning that for some given couples of values of
n and m the number of uncoupled and quasi-homogeneous QT solutions found is greater
than that reported in [1, 4], see Tables 1 to 3: results from [1] are reported in rows marked
by the [1]-reference. For the sake of brevity, only those cases for which the number of
solutions differs between the present study and [1, 4] have been reported; differences are
highlighted by bold style. A detailed proof of the validity of solutions found in the present
work and of the existence of more solutions with respect to those presented in [1, 4] is
reported in [2]. Despite the achievement attained with Algorithm 2, computational limits
to the maximum number of plies n still exist.

To overcome this limit, general rules that allow obtaining QT solutions made of a higher
number of layers have been derived, exploiting the superposition of initial QT sequences,
[2]. In general, the stack resulting from superposition of QT solutions is not necessarily a
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N. of groups m

N. of plies n 2 3 4 5 6 7 8 9 10 11 12 N. of solutions

7 0 1 1 0 0 0 0 0 0 0 0 2
8 1 0 1 0 0 0 0 0 0 0 0 2
9 0 1 2 1 0 0 0 0 0 0 0 4
10 0 4 0 1 0 0 0 0 0 0 0 5
11 0 0 9 4 1 0 0 0 0 0 0 14
11-[1] 0 0 6 4 1 0 0 0 0 0 0 11
12 1 8 9 0 1 0 0 0 0 0 0 19
12-[1] 1 4 9 0 1 0 0 0 0 0 0 15
13 0 0 25 32 6 1 0 0 0 0 0 64
13-[1] 0 0 14 20 6 1 0 0 0 0 0 41
14 0 37 34 17 0 1 0 0 0 0 0 89
14-[1] 0 22 17 17 0 1 0 0 0 0 0 57
15 0 0 10 207 78 9 1 0 0 0 0 305
15-[1] 0 0 5 111 48 9 1 0 0 0 0 174
16 0 58 305 96 29 0 1 0 0 0 0 489
16-[1] 0 29 168 48 29 0 1 0 0 0 0 275
17 0 0 2 893 895 144 12 1 0 0 0 1947
17-[1] 0 0 1 458 471 90 12 1 0 0 0 1033
18 0 114 1492 1262 208 45 0 1 0 0 0 3122
18-[1] 0 57 746 686 104 45 0 1 0 0 0 1639
19 0 0 0 2216 8192 2663 264 16 1 0 0 13352
20 0 0 7391 11240 3683 396 66 0 1 0 0 22777
21 0 0 0 4936 59701 39986 6283 406 20 1 0 111333
22 0 0 29144 101207 49008 8869 694 93 0 1 0 189016
23 0 0 0 6369 346057 519231 141298 13130 626 25 1 1026737
24 0 0 75421 844224 665507 156300 18569 1118 126 0 1 1761266

Table 1: Number of independent uncoupled QT solutions obtained as a function of total number of plies
and number of orientation groups

Algorithm 2 Improved QT stacks finder
1. Set inputs: n, m = m∗ = 2;
2. Generate sequences:

- perform partial-sequences generation;
- generate only mechanically distinct complete sequences;

3. Search for QT solutions:
3.1 Find sequences for which Eq. (16) is verified (uncoupled QT solutions);
3.2 Find sequences for which Eq. (17) is verified (homogeneous QT solutions);
3.3 Find sequences for which Eqs. (16) and (17) are verified (quasi-homogeneous QT

solutions);
4. Growing loop of growable dependent solutions:

4.1 Input: raw set of QT solutions with m = m∗;
4.2 Classify QT solutions in three groups:

4.2.1 Independent QT solutions with m = m∗, that are stored;
4.2.2 Dependent QT solutions, that are discarded;
4.2.3 Growable dependent QT solutions, that are grown to m = m∗ + 1 and

temporarily stored;
4.3 Repeat Step 4 until the set of growable dependent solution is empty.
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N. of groups m

N. of plies n 2 3 4 5 6 N. of solutions

4 2 0 0 0 0 2
5 2 0 0 0 0 2
5-[4] 1
6 4 0 0 0 0 4
7 0 1 0 0 0 1
8 8 0 0 0 0 8
9 4 0 0 0 0 4
9-[4] 2
10 20 8 0 0 0 28
10-[4] 22
11 0 22 0 0 0 22
11-[4] 14
12 36 0 0 0 0 36
12-[4] 34
13 16 52 0 0 0 68
13-[4] 36
14 2 12 32 128 16 190
14-[4] 119
15 0 100 0 0 0 0 100
15-[4] 52
16 0 32 40 16 32 120
16-[4] 76
17 142 652 32 0 0 826
17-[4] 445
18 34 720 336 16 0 1106
18-[4] 617
19 4 1436 4232 512 0 6184
20 68 4856 5104 0 0 10028
21 26 500 1168 1248 0 2942
22 0 36804 302832 139424 4864 483924
23 50 164918 129212 2016 0 296196
24 152 5864 159632 0 0 165648
25 0 314018 665512 123044 4000 1106574

Table 2: Number of independent QT solutions with C = 0 obtained as a function of total number of
plies and number of orientation groups

QT one [4], therefore, criteria must be derived to ensure that resulting stacks are still QT
ones. For more details on the derivation of such criteria the reader is addressed to [2].
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N. of groups m

N. of plies n 2 3 4 5 6 N. of solutions

7 1(1) 0 0 0 0 1(1)
8 1 0 0 0 0 1
9 0 0 0 0 0 0
10 0 0 0 0 0 0
11 4(2) 0 0 0 0 4(2)
11-[1] 3(2) 0 0 0 0 3(2)
12 1 0 0 0 0 1
13 4 3 0 0 0 7
13-[1] 2 2 0 0 0 4
14 0 2(1) 0 0 0 2(1)
15 4 3 0 0 0 7
15-[1] 2 2 0 0 0 4
16 6 3(1) 0 0 0 9(1)
16-[1] 5 3(1) 0 0 0 8(1)
17 30 11 0 0 0 41
17-[1] 15 8 0 0 0 23
18 0 9 0 0 0 9
18-[1] 0 5 0 0 0 5
19 60 41 0 0 0 101
19-[1] 30 22 0 0 0 52
20 52 17 1 0 0 70
20-[1] 30 9 1 0 0 40
21 62 18(2) 0 0 0 80(2)
21-[1] 31 13(2) 0 0 0 44(2)
22 32(2) 188(1) 26 2 0 248(3)
22-[1] 17(2) 98(1) 13 2 0 130(3)
23 189(1) 970 0 0 0 1159(1)
23-[1] 95(1) 499 0 0 0 594(1)
24 248 47 1 0 0 296
24-[1] 140 26 1 0 0 167
25 326 4184 98 0 0 4608
25-[1] 163 2132 57 0 0 2352
26 108 2065 672 41 3 2889

(2) (3) (2) (7)
26-[1] 54 1059 354 26 2 1495

(2) (3) (2) (7)
27 171(1) 1804 510 39 1 2525(1)
27-[1] 86(1) 918 256 21 1 1282(1)
28 357 9492(1) 1691(2) 61 9 11610(3)
28-[1] 203 4789(1) 871(2) 33 6 5902(3)
29 122 75281 15068 167 0 90638
29-[1] 61 37747 7546 86 0 45441
30 106 10923 1009(3) 51 0 12089(3)
30-[1] 53 5552 512(3) 29 0 6146(3)
31 28 290227 156565(1) 1728 1 448549(1)
32 263 161436(5) 70091 4521 100 236411(5)
33 316 260442 112324 937 0 374019
34 716 1389039 568492 12589 38 1970874

(107) (35) (142)
35 2 8291650 6392064 90433 82 14774231

(8) (7) (15)

Table 3: Number of independent quasi homogeneous QT solutions obtained as a function of total number
of plies and number of orientation groups; symmetric solutions are reported in parentheses.
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4 CONCLUSIONS

In this paper, a detailed description of an efficient algorithm for the search of QT se-
quences has been presented. The algorithm has proved to be able to find longer sequences
than in the past. In addition, a greater number of solutions has been found, showing that
previous solutions number was underestimated.

In addition, superposition criteria derived in [2] allow obtaining QT sequences by su-
perposing basic QT thinner stacks by following precise rules. In this way, QT solutions
with any desired total number of plies can be generated. This virtually shatters any ob-
stacle to the adoption of QT sequences for the design of thick laminates and laminates
made of a significant amount of thin plies.
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