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Abstract. The aerodynamic roughness length (z0) and the displacement height (d) are
critical for wind modelling based on the log vertical profile. It is well known that the
values of these parameters depend on weather conditions and land coverage. Thus, many
authors have studied its relationship, providing typical ranges for each land coverage. In
this work, a comprehensive literature review is performed to collect the ranges of z0 and
d for each surface type. In particular, we have focused on the coverages present in the
Information System of Land Cover of Spain (SIOSE) [1]. Using these ranges, we propose
a procedure to construct z0 and d maps through a downscaling wind model. Results from
the HARMONIE-AROME and ECMWF mesoscale numerical weather prediction models
are downscaled using a 3D diagnostic wind model with adaptive finite element method
[2, 3]. The values of z0 and d are estimated with a memetic algorithm that combines the
Differential Evolution method [4], a rebirth operator and the L-BFGS-B algorithm [5]. So,
the root mean square error (RMSE) of the wind model is minimised against the observed
wind data. This fast procedure allows updating the roughness parameters for any weather
condition. Some numerical experiments are presented to show the performance of this
methodology. Although we work with the SIOSE database and the Wind3D model, the
method can be used in conjunction with other databases and downscaling models.

1 INTRODUCTION

The influence of aerodynamic parameters in the modelling of wind field in the mi-
croscale and mesoscale, specially the wind velocity near the ground, is well known. There-
fore, the accuracy of these parameters is critical to simulate the wind field used in wind
power plants energy prediction, dispersion of air pollution, and wildland fire spread among
others. In this paper we propose a strategy to improve the results of a downscaling wind
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model by estimating the values of the roughness length (z0) and displacement height (d)
using Differential Evolution (DE) and a rebirth operator (RO).

A downscaling wind model uses the prediction of a Numerical Weather Prediction
(NWP) model as input wind field to compute a new one in a higher resolution mesh
that better captures the terrain features. In this paper, the downscaling wind model
is Wind3D [3], a diagnostic mass-consistent wind model with an updated atmospheric
parameterisation and wind profile proposed in [6, 7, 8], and it is coupled with two different
NWP models: specifically the European Centre for Medium-Range Weather Forecasts
(ECMWF) model [9] and the HARMONIE-AROME model [10]. In this paper we have
used the land cover database of Spain (SIOSE) [1].

The content of the paper is organised as follows. As a first step, we need to know the
different land covers of the region that, in this case, are given by the SIOSE database
described in Sect. 2. Then, we identify the suitable ranges of z0 and d for each land cover;
these ranges are given in the literature and shown in Sect. 3. For a given region there
exists a combination of different land covers, so we need to compute the actual value of
each aerodynamic parameter by using the formula presented in Sect. 3 too. Then, with
these values and the forecast wind field of the NWP model, we simulate the resulting
wind field with the Wind3D model (Sect. 4). The last step of the algorithm is to compute
the fitting function (the root square mean error between the predicted and the observed
wind in meteorological stations) and generate the next population of the optimisation
algorithm (Sect. 5). Numerical experiments in a realistic case in Gran Canaria Island are
described in Sect. 6. Finally, the conclusions of this work are summed up in Sect. 7.

2 SIOSE LAND COVER DATABASE

In 1990, the first land cover database encompassing the whole national territory was
constructed in Spain on a scale of 1 : 100.000. It was developed in the framework of the
CORINE Land Cover (CLC) European project [11]. After successive updates in 2000,
2006 and 2012, it became Image & CORINE Land Cover. The SIOSE database consists
of different basic (40) and compound coverages. A compound coverage is made up of a
combination of basic ones. It considers eight general groups of basic coverages (Crops,
Grassland, Forest, Scrubs, No Vegetation, Artificial Coverage, Wet Coverage and Water
Coverage) that are further refined into forty specific classes of basic coverage; see [12].

3 ROUGHNESS LENGTH AND DISPLACEMENT HEIGHT

To obtain siutable values of z0 and d, we must define the search space of them. We
have carried out a literature review to find the ranges of z0 and d values showed in Table 1
for each land cover; see [3]. The first and second columns show the SIOSE code and a
description for each land coverage. The third and fourth, and the fifth and sixth columns
present the nominal value and the range of the parameters z0 and d, respectively.

The SIOSE project uses a vectorial format, but, for convenience, we will translate it
to a raster format. For this, we will define a grid with np points and, for each point, we
will look for the mean value of basic coverages. Once we have the values of z0 and d for
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Table 1: Nominal values and ranges of z0 and d for the land cover classes provided by
SIOSE.

Code Land Cover z0z0z0 (m) z0minz0minz0min–z0maxz0maxz0max ddd (m) dmindmindmin–dmaxdmaxdmax

ACM Sea Cliffs 0.05 0.05–0.19 57 3.3–85

ACU Water Courses 0.00025 0.0001–0.01 0 –
AEM Water body. Reservoirs 0.00025 0.0001–0.005 0 –
AES Estuaries 0.0002 0.0001–0.01 0 –
ALC Coastal Lagoons 0.005 0.0001–0.01 0 –
ALG Water body.

Lakes and Lagoons 0.0005 0.0001–0.005 0 –
AMO Seas and Oceans 0.0002 0.0001–0.03 0 –
ARR Rocky Outcrops and Rocks 0.005 0.0003–0.18 0.03 0–0.96

CCH Screes 0.1 0.05–0.15 0.6 0.56–0.66

CLC Quaternary lava flow 0.0286 0.0013–0.0735 0.15 0–0.4

CNF Forest. Conifers 1.28 0.25–1.93 13.1 4.87–22

CHA Herbaceous crops. Rice 0.072 0.001–0.11 0.85 0.1–1.55

CHL Herbaceous crops.

Different from Rice 0.1 0.004–0.74 0.25 0.1–3

EDF Artificial Coverage.

Buildings 1.5 0.7–3.7 14 7–19.73

FDC Forest. Leafy. Deciduous 1 0.18–1.4 11.8 3–21.6

FDP Forest. Leafy. Evergreen 0.72 0.6–2.65 9.7 3–31

GNP No Vegetation.

Glaciers and

Perpetual Snow 0.001 0.00001–0.012 0.01 0–0.06

HMA Salt Marshes 0.11 0.0002–0.17 0.6 0–0.93

HPA Wetlands 0.1 0.005–0.55 0.55 0.03–3

HSA Continental Salt Mines 0.01 0.0005–0.04 0.05 0–0.22

HSM Salt Lakes 0.01 0.0005–0.04 0.05 0–0.22

HTU Peat bogs 0.03 0.0005–0.03 0.16 0–0.16

LAA Artificial Coverage.

Artificial water body 0.0001 0.0001–0.005 0 –
LFC Woody Crops.

Citrus Fruit Trees 0.31 0.03–0.4 3 0–4

LFN Woody Crops.

No Citrus Fruit Trees 0.25 0.03–1 0.92 0–4

LOC Other Woody Crops 0.0615 0.0369–0.0861 0.33 0.2–0.47

LOL Olive Groves 0.48 0.25–0.61 2.67 2–3

LVI Vineyards 0.2 0.08–0.55 0.75 0.31–1.4

MTR Scrubs 0.16 0.016–1 4.8 0.9–7.1
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Table 1: Continued

Code Land Cover z0 (m)z0 (m)z0 (m) z0minz0minz0min–z0maxz0maxz0max d (m)d (m)d (m) dmindmindmin–dmaxdmaxdmax

OCT Artificial Coverage.

Other Buildings 0.5 0.06–1 4 2–14

PDA No Vegetation.

Beaches, Dunes and Sandy Areas 0.0003 0.0003–0.06 0 0–0.33

PRD Crops. Meadows 0.03 0.001–0.1 0.013 0.007–0.035

PST Grasslands 0.09 0.001–0.15 0.171 0.013–0.66

RMB No Vegetation. Ravines 0.0012 0.0003–0.005 0.03 0–0.03

SDN No Vegetation. Bare Soil 0.001 0.0002–0.04 0.03 0–0.22

SNE Artificial Coverage.

Unbuilt Land 0.0003 0.0002–0.04 0 0–0.22

VAP Artificial Coverage.

Road, Parking or Unvegetated

Pedestrian Areas 0.03 0.0035–0.5 1 0.02–2.5

ZAU Artificial Coverage.

Artificial Green Area and

Urban Trees 0.4 0.03–1.3 3.5 3.5–14

ZEV Artificial Coverage.

Extraction or Waste Areas 0.1 0.0003–0.18 0.16 0–1

ZQM No Vegetation. Burnt Areas 0.6 0.1–1.1 3.27 0.54–6

each basic coverage, we can compute the specific z0 and d values at any point using an
appropriate weighted mean. This way, the SIOSE database will let us create a matrix with
the percentage of the basic coverages at any point. This matrix is defined as follows: let
M be an np×nb matrix, with components mi,j, where nb is the number of basic coverages.
For each row i of M , mi,j is the fraction of the basic coverage j at the point ni (mi,j < 1
and

∑nb
j=1mi,j = 1). When the ranges of z0 and d are set for each basic land coverage, we

can compute its values at any point of the terrain. Assuming that the values of z0 and d
are a certain mean of the values of the basic coverages z0j and dj, j = 1, . . . , nb, we can
compute their values at any point. In this case, the formula proposed by [13] was applied.
For a coverage i composed by nb basic canopies with roughness length z0j; j = 1, . . . , nb
on a fraction mij of the area, respectively, the effective z0 is approximated by:

z0 =

nb∏
j=1

z
mij
0j . (1)

Regarding d, it is known that the effective displacement height of a heterogeneous
coverage can exceed the mean canopy height significantly. So, we propose to use a weighted
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root mean square to obtain a higher mean value than Taylor’s one:

d =

√√√√ nb∑
j=1

mijd2
j , (2)

where dj and mij are the displacement height and the fraction of the basic coverage j in
the composed one i, respectively. Figures 1(a) and (b) show the resulting composed z0

and d values in Gran Canaria for the nominal values of basic coverages given in Table 1.

(a) Roughness length (z0) map (b) Displacement height (d) map

Figure 1: Roughness length and displacement height maps of Gran Canaria island (m)
corresponding to the nominal values stated in Table 1 and using the mean values given
in equations (1) and (2), respectively.

4 DIAGNOSTIC WIND MODEL

We consider a mass-consistent model [3] to compute a wind field u in a domain Ω
with a boundary Γ = Γa ∪ Γb, which satisfies the mass continuity equation in Ω, for an
incompressible flow, and the impermeability condition on the terrain Γa:

∇ · u = 0 in Ω, (3a)

n · u = 0 on Γa, (3b)

where n is the outward-pointing normal unit vector and Γb the free boundary. The
model formulates a least-squares problem in the domain Ω to find a wind field u =
(ux, uy, uz), such that it is adjusted as much as possible to an interpolated wind field
u0 = (u0x, u0y, u0z). The adjusting functional for a field v = (vx, vy, vz) is defined as:

e(v) =
1

2

∫
Ω

(v − u0)T P (v − u0) dΩ, (4)
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where (v − u0)T is the transpose of (v − u0), P is the 3×3 diagonal transmissivity matrix
with P1,1 = P2,2 = 2α2

1 and P3,3 = 2α2
2, being α1 and α2 the Gauss Precision moduli. The

Lagrange multiplier technique is used to minimise the functional (4), with the restrictions
(3). Considering the Lagrange multiplier λ, the Lagrangian is defined as:

L (v, λ) = e (v) +

∫
Ω

λ∇ · v dΩ, (5)

and the solution u is obtained by finding the saddle point (u, ψ) of the Lagrangian (5).
This resulting wind field satisfies the Euler-Lagrange equation:

u = u0 + P−1∇ψ, (6)

where ψ is the Lagrange multiplier. If α1 and α2 are constant in Ω, substituting (6) in
(3), the problem results in an elliptic PDE in ψ to be solved with FEM:

∂2ψ

∂x2
+
∂2ψ

∂y2
+ α

∂2ψ

∂z2
= −2α2

1

(
∂u0x

∂x
+
∂u0y

∂y
+
∂u0z

∂z

)
in Ω, (7a)

−n · P−1∇ψ = n · u0 on Γa, (7b)

ψ = 0 on Γb, (7c)

where α = α1/α2 is the ratio of the Gauss Precision Moduli.
The interpolated wind field is computed in the whole domain Ω from pointwise wind

data. The wind data can come from measurement stations or a numerical weather pre-
diction system. In this work, we will use the HARMONIE-AROME forecast wind field,
as proposed by [2]. Using these data, we construct the interpolated wind field, u0 in two
steps: first, a horizontal interpolation and, then, a vertical extrapolation; see [3].

5 PARAMETER ESTIMATION

The results of the mass-consistent model are very sensitive to the values of α, ξ, z0, and
d. Thus, an accurate definition of these parameters is critical to obtain a reliable wind
field. We have to estimate a value of α and ξ for the whole domain, and a value of z0 and
d for each land cover class. This means that the number of unknowns depends on the
number of different land covers in the region of interest. These parameters are estimated
using a memetic method to optimise a fitness function described in this section.

The objective of the optimisation is to find the values of the parameters such that
the wind computed with the model is the most similar to a known wind at some control
points. The wind values at the control points are given by the HARMONIE-AROME
model or measurement stations. The error between the model and the known data is,

RMSE =

√√√√ 1

nc

nc∑
i=1

(uxi − ucxi)2 + (uyi − ucyi)2 + (uzi − uczi)2, (8)

where nc is the number of control points, (uxi, uyi, uzi) and (ucxi, u
c
yi, u

c
zi) are, respectively,

the wind velocity obtained with the mass-consistent model and the known wind at the ith
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control point. So, the parameter estimation consists of the minimisation of the RMSE.
Note that for each evaluation of the fitness function, the wind model has to be executed.

The optimisation strategy is based on a memetic method composed of three tools:
DE [4], a Rebirth Operator (RBO) [14], and the L-BFGS-B algorithm [5]. DE is an
evolutionary algorithm that utilises a population composed of a fixed number nv of D-
dimensional parameter vectors pi,g for each generation g; g = 1, . . . , ng. The initial
population, which must cover the parameter searching space, is chosen randomly. The
mutation procedure modifies an existing vector by adding to itself a weighted difference
between two other vectors. In the crossover step, these mutated vectors are mixed with
another target vector to obtain the so-called trial vector. If the trial vector yields a lower
fitness function value than the target vector, the target vector is replaced by the trial
vector (selection). Each population vector has to serve as target vector at least once, so
nv competitions will take place per generation.

The accuracy of the results obtained using DE may be insufficient. To increase it, we
have run ne DE experiments and have performed a statistic analysis of the results obtained
for each one. This analysis will allow us to reduce the search interval. Let pji,ng(j =
1, . . . , ne; i = 1, . . . , nu) be the estimation of the nu unknown parameters obtained in
each of the ne experiments. We can compute its average pi,ng , and standard deviation
σi,ng . Then, the search interval can be reduced to the confidence interval of each variable,

i.e., pi,ng ±
σi,ng√
ne
Tne−1, τ

2
, where 1 − τ is the confidence coefficient and T , the Student’s

t-distribution. If one extreme of the new interval exceeds the old extreme, the latter is
preserved. This allows the rebirth of a new population to restart DE. This procedure
may be repeated as many times as required. Note that the ne DE experiments can be
run in parallel. When the last generation of the last reborn population is evaluated,
the best parameter vector among all the DE experiments is selected to be the starting
point of the L-BFGS-B algorithm. This algorithm is a procedure for solving large non-
linear optimisation problems with simple bounds. It is based on the gradient projection
method and uses a limited memory BFGS matrix to approximate the Hessian of the fitness
function. The results of this final minimisation will be the estimated parameters.

6 NUMERICAL EXPERIMENT

In this section, an experiment is presented. It was an application in an eastern lo-
cation of Gran Canaria, using the HARMONIE-AROME and ECMWF models and the
measurement wind data from the AEMET network of stations. In this experiment, we
apply the described methodology to a region of the Gran Canaria island. The down-
scaling model uses the forecast from HARMONIE-AROME and ECMWF. The memetic
algorithm estimates the roughness length and displacement height.

The region of interest is a domain of 12 km× 28.5 km× 3 km located at the East of Gran
Canaria. The tetrahedral mesh is adapted to the terrain with additional local refinement
around the measurement stations and the shoreline; see a detail of the terrain triangulation
in Fig. 2(a). The mesh contains 44 970 tetrahedra and 10 070 nodes. The land coverages
are taken from the SIOSE database. Since, in Gran Canaria, the range of variation of
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environmental temperature is rather small throughout the year, the land coverages may
be considered constant in size and shape. Precisely, in the region of interest, there are
1216 land cover polygons, each with a particular combination of 26 basic coverages.

Table 2: Selected wind episodes in an Eastern region of Gran Canaria during June 2015.

BL HARMONIE HARMONIE Surf. buoy. B-V freq., Ratio

stability 10 m wind 10 m wind flux, Bs N2h−h V∗/W∗
speed (ms−1) direction (◦) (m2s−3) (s−1)

LS 10.18 336.92 – NNW −1.38× 10−4 1.68× 10−2 –
NS 6.10 331.46 – NNW −9.78× 10−4 ≈ 0 –
TN 7.51 331.82 – NNW ≈ 0 ≈ 0 –
CN 8.52 340.72 – NNW 3.68× 10−3 1.04× 10−2 –
PC 1.59 116.78 – ESE 6.22× 10−3 1.54× 10−2 0.17

MC 6.87 358.98 – N 3.02× 10−3 1.74× 10−2 0.76

The roughness parameters depend on wind velocity and stability due to the fact that
they characterise the surface that influences the wind speed profile (so-called footprint).
This footprint is dependent on stability and height (in general, boundary layer conditions),
and so indirectly are the roughness parameters. The stability dependence of the roughness
length and displacement height was demonstrated by [15]. For this reason, we have chosen
six episodes to carry out the experiment, each one corresponding to a different stability
class. Table 2 shows the selected episodes indicating the stability class, the 10 m wind
speed and direction, and the values of the Bs, N2h−h, W∗, and V∗. These values are the
HARMONIE-AROME predictions for June 2015. The stability class has been defined
using the Bs values and N2h−h or the comparison between W∗ and V∗ values, according
to [8]. We want to emphasise that, although we have defined the third episode of Table 2
as Truly Neutral (the only case out of 240 for the whole period), it corresponds to a
Conditionally Neutral boundary layer with very small Bs and N2h−h. The same occurs
with the Nocturnal Stable case, which may also be considered as a Long-Lived Stable
boundary layer with a very small N2h−h. Moreover, the selected PC episode is the only
one with ESE wind direction in that month. In the studied period, most episodes were
LS (44.58 %), MC (41.25 %), or CN (9.58 %). For each of the six chosen episodes, the
memetic algorithm estimates the values of α, and the 26 basic coverages z0 and d. The
searching space for the aerodynamic parameters is the one given in Table 1. Regarding
α, its values ranges from 10× 10−2 to 1 in SBL and from 1 to 5 in CBL.

Wind measures at four stations of the AEMET network are available in the studied
region. Their UTM coordinates and heights above sea level are given in Table 3 and
shown in Fig. 2(a). Two different experiments have been carried out; one using data
from HARMONIE-AROME, and the other using data from ECMWF. Figure 2(a) shows
the grid points from both NWP models. The wind velocities are plotted for a particular
episode. The interpolated wind field is built from the NWP wind velocities at 10 m.
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Table 3: Location in UTM zone 28N coordinates and heights above the sea level of the
anemometers used in the numerical application in Gran Canaria Island.

Code Name xxx (m) yyy (m) zzz (m)

C639U San Bartolomé de Tirajana, El Matorral 455345 3076503 51

C648C Aguimes 455326 3086484 316

C649I Gran Canaria, Aeropuerto 461659 3088640 34

C649R Telde, Melenara 462855 3095805 19

Finally, we estimate the parameters using the memetic algorithm described in Sect. 5.
The control points used to compute the RMSE are different for the two experiments.
In the case of the HARMONIE-AROME, there are 28 control points: the wind data
of four stations and the 24 HARMONIE-AROME 10 m wind located over the sea. In
the ECMWF experiment, there are the four stations and two more ECMWF points over
the sea; see Fig. 2(a). The results of the experiments are condensed in Table 4 as the
RMSE values for the six episodes. These RMSE values are always constructed against the
measurement wind data from the meteorological stations. The first three rows correspond
to the HARMONIE-AROME experiment, while the last three correspond to the ECMWF
experiment. Each group of three rows has to be read the same way: the first row is the
RMSE obtained by NWP forecast; the second row is the error obtained by the downscaling
model Wind3D using the nominal values from Table 1; i.e. without using the memetic
algorithm; and the third row are the errors with the memetic procedure.

Table 4: Experiment results with data from HARMONIE-AROME and ECMWF.

Wind direction NNW NNW NNW NNW N N
Wind speed (ms−1) v > 6v > 6v > 6 v > 6v > 6v > 6 v > 6v > 6v > 6 v > 6v > 6v > 6 v ≤ 2v ≤ 2v ≤ 2 v > 6v > 6v > 6
Stability LS NS TN CN PC MC

RMSE(H-A) 8.47 3.12 5.94 7.89 3.29 2.46
RMSE(H-A/W3D) nominal values 4.00 3.47 4.74 6.21 2.55 2.40
RMSE(H-A/W3D) estimated values 2.44 2.59 3.47 4.78 2.27 1.31
RMSE(ECMWF) 7.08 3.88 3.16 6.14 2.97 2.98
RMSE(ECMWF/W3D) nominal values 4.00 3.47 4.74 6.21 2.55 5.90
RMSE(ECMWF/W3D) estimated values 2.56 2.91 3.68 4.79 2.53 2.35

Looking at the results, in the HARMONIE-AROME experiment, there has been an
improvement between 16.99 % and 71.19 % comparing the results from the NWP and the
wind obtained using the described procedure. In the ECMWF experiment, the improve-
ment is similar to the one obtained in the HARMONIE-AROME experiment, except in
the TN episode. In this case, the downscaling model has not been able to improve the
ECMWF forecasting. Looking at the differences in RMSE between the downscaling fore-
cast using nominal or estimated values, the necessity of estimating z0 and d gets clear;
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(a) Adaptive mesh (b) Long-Lived Stable (c) Mechanically-Convective Layer

Figure 2: Detail of the adaptive mesh of Gran Canaria Island (a). The symbols indicate
the locations of the data falling inside the domain: the triangles represent the measure-
ment stations; the stars, the control points of HARMONIE-AROME only; the squares,
the control points of both HARMONIE-AROME and ECMWF; and the circles, the ad-
ditional grid points of HARMONIE-AROME used in the mass-consistent model. Detail
of 10 m wind velocities in the (b) LS and (c) MC cases of Table 2. The colours represent
the wind speed obtained by Wind3D. The black vectors are the wind velocities provided
by HARMONIE-AROME. The grey vectors are the downscaled wind velocities.

the errors are always smaller for the estimated values. Figure 2 represents the forecast
10 m wind velocities for the LS and MC episodes. The wind field represented is the
HARMONIE-AROME forecast and the Wind3D with estimated values results. We ob-
serve that the mass-consistent model reproduced the HARMONIE-AROME wind, but
providing a more accurate wind in the microscale and improving the predictions in the
surroundings of the measurement stations (Table 4).

7 CONCLUSIONS

This paper presents a methodology to improve the downscaling forecasting by esti-
mating the involved parameters. These are the ratio of the Gauss precision moduli α,
that appears in the governing equation; a weighting parameter ξ used in the horizontal
interpolation of wind velocities; and the roughness length z0 and the displacement height
d of each basic cover class in the logarithmic wind profile. To estimate these parameters,
a memetic algorithm, consisting of the DE method and L-BFGS-B algorithm, combined
with a rebirth procedure based on Student t-distribution confidence interval, is proposed.

10
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A numerical experiment was carried out on a real case in Gran Canaria Island. In
this case, the input values of the model came from two different models: HARMONIE-
AROME, and ECMWF; and the control points were some measurement stations and
mesoscale model nodes over the sea. Some episodes with different atmospheric conditions
have been considered. In all cases, the wind prediction of the diagnostic model with the
estimated parameters was closer to the measurement data than the one provided by the
mesoscale model. Accordingly, we conclude that the proposed approach, combining pa-
rameter estimation and a mass-consistent model, is an efficient tool for NWP downscaling.
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