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ANTONIO RANALLI2

1 School of Science and Technology, University of Camerino
via Madonna delle Carceri, 9, 62032, Camerino (MC), Italy

{verdiana.delrosso, simonetta.boria, letizia.corradini,roberto.giambo}@unicam.it,
www.unicam.it

2 Visionar srl
Via Beato Amico, 37, 62010, Montefano, (MC), Italy

{andrea.andreucci, antonio.ranalli}@armotia.com, www.armotia.com

Key words: Motorcycle Modelling, Low speed, Control

Abstract. In the autonomous driving the main challenge is vehicle stabilization with
electronic control systems - even when vehicle stops - which can enhance riders safety.
A mathematical model which captures its main dynamics is needed for control system
design, but such models has not been thoroughly investigated at low speed.

In the work a validated model of the motorcycle dynamics has been derived with
the specific goal of a model simple but able to capture all the dynamics relevant to the
capsize motion of two-wheeled vehicles. For these purposes, the work presents a 4 degrees
of freedom model dynamically similar to an inverted pendulum that considers both rear
and front wheel driving torques instead of rear driving torque and steering one. Moreover,
steering axis is initially set on a strictly positive steering angle and is kept constant over
time. Front wheel driving torque actuation with a rotated steering axis helps balancing
when steering torque is not actuated. The analytical equations of motion are given by
the Lagrangian approach: the result is a nonlinear second order ODE system in four
unknowns - roll and yaw angles and rear contact point coordinates.

The analytical model has been then validated by FastBike, a computer simulation
multibody software for dynamic analysis of two wheeled vehicles which includes five bod-
ies, a nonlinear tyre model and nine degrees of freedom. The software has been suitably
modified for low speed range. In validation process a controller has been designed using
the analytical model and then applied to the multibody one: the simulations show a
good match in roll and yaw angles comparisons. This indicates that the analytical model
captures the main dynamics and can be used for model-based control design.
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1 INTRODUCTION

In recent years technology advances in automotive industry open the way to motorcycle
autonomous driving and rider safety systems which main challenge is the enhancement of
vehicle stability also at low speed or when the rider stops, for example during a red traffic
light. As such, it is of growing importance to devise control oriented models of the bike
dynamics to be employed for control design purposes. However, motorcycle dynamics are
more complex than four-wheeled vehicles one because in-plane and out-of-plane dynamics
are coupled, [1]. Therefore, the derivation of control-oriented models and the design of
model based control systems is not trivial.

In scientific literature the stability and dynamics of bicycles or motorcycles has been
studied by many researchers [2, 3, 4]: in [5] is presented a review on dynamic modelling
of single-track-vehicles. Some simple second-order dynamic models are presented in [6] to
study the balance stability of a bicycle. On the other hand, some researchers have studied
the motorcycle dynamics using multi-body approach [7, 1, 8, 9] which are not suitable for
control system design due to their complexity. On autonomous motorcycle modelling, Yi
et al. [10, 11] proposed a 5th order mathematical model based on constrained Lagrangian:
the model includes also the steering dynamics and for control design the model is then
linearised. Moreover, in these papers a trajectory tracking and stability control for agile
manoeuvres using steering angular velocity and rear thrust as control inputs is presented.
The control works fine at low speed too. The stability is achieved by steering control and
gyroscopic actuators. Similarly, in [12] a set of four second order equations of motion
based on Lagrangian approach has been derived: the steer torque applied by the rider to
the handlebar is the only control input. A control-oriented motorcycle analytical model
is presented in [13]. The model considers both longitudinal and lateral forces exerted
by the tires and has as inputs the steering torque and the front and rear wheel torques.
Recently, electrification of vehicle propulsion is also applied to motorcycles allowing the
birth of all-wheel driven motorcycles. The research has investigated whether this feature
helps a better management of vehicle stabilization. Yang and Murakami [14] proposed an
electric motorcycle model, where there are two steering actuators and two driving ones.
When the motorcycle moves with normal or high speed, both front and rear steering
motors can be effectively controlled by swaying to keep the balance; when it stops or
moves with slow speed, the front and rear steerings are rotated in the same direction and
the self-balancing is achieved by driving motors similar to Segway stabilization control.
In [15, 16] control strategies that increase the stability of the motorcycle by acting only
on driving and braking torques have been presented. These strategies take into account
the rider intentions and are applied for cornering stability. In mentioned articles the front
wheel torque is only brake one, whereas in this paper authors want to take advantage of
driving front wheel torque. Summarizing, all aforementioned studies involves in some way
either the steering actuation or only the rear driving torque or in other cases a braking
not driving front wheel torque or multibody approaches, not suitable for control design.
Moreover, in most of cases works are carried out at medium and high speed range.

In the paper a validated model of the motorcycle dynamics has been derived with
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the specific goal of a model simple but able to capture all the dynamics relevant to the
capsize motion. In fact, these are the requirements for designing a model-based self-
balancing control method for the vehicle system, even when it stops or moves slowly (0.1
- 1 m/s). Moreover, it is worth underlining that the work would also find out whether
front wheel torque can help in some way bike stabilization when the steering handlebar
cannot be actuated. Going in this direction, the paper presents a 4 degrees of freedom
(DoF) model dynamically similar to an inverted pendulum that considers both rear and
front wheel driving torques instead of rear driving torque and steering one. Steering axis
is initially set on a strictly positive steering angle and is kept constant over time. The idea
is to reproduce a configuration similar to Segway or wheelchair which are stable at low
speed [17, 18]. In fact, when the steering axis is rotated up to its maximum positive angle
and then locked, front wheel driving torque actuation should help motorbike balancing
even if steer torque is not available. In the presented model the analytical equations of
motion are obtained starting from the Lagrangian approach: the result is a nonlinear
second order ODE system. Based on this model a controller has been designed and then
tested on a multibody software.

The rest of the paper is organized as follows. Section 2 is devoted to the mathematical
model of the two wheel drive electric motorcycle. Section 3 presents a stability con-
trol design and numerical simulation results for mathematical model validation. Finally,
concluding remarks are described in Section 4.

2 MOTORCYCLE DYNAMICAL MODEL

The riderless motorcycle model has two parts: a rear frame and a front steering assem-
bly. Model assumptions are: 1. the contact of the tread and the ground is point-contact,
thus the thickness of tires is supposed to be ignored; 2. the frame of the motorbike is
regarded as a point mass; 3. the ground is flat and the vertical motion is neglected (no
suspension motion); 4. there is no side sliding when the motorcycle is running; 5. front
contact point and instantaneous rotation axis do not change when the lean angle changes;
6. steering angle is positive and constant over time. Notice that these assumptions are
not so restricted in the viewpoint of motorcycle low speed.

Figure 1 shows a schematic diagram of the model. Let P and Q denote rear and front
contact point, respectively. To identify the motorcycle in a generic configuration and
derive the model, two different reference frames have been adopted (see Fig.1):

• the inertial reference frame Σ = (Oxyz): a right-handed time-invariant reference
frame fixed in the space;

• the body reference frame S = (Px′y′z′): a reference system fixed in the rear contact
point of the main frame of the motorcycle with the z′-axis parallel to the vehicle
vertical axis and pointing downwards; the x′-axis indicates the forward direction
and the y′-axis completes a right-handed frame. The reference frame origin P has
coordinates (x0, y0, 0)T with respect to the inertial one.

In a generic configuration the rear frame is no more parallel to x, but forms an angle θ,
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Figure 1: Motorcycle model scheme in trivial configuration with reference frames used to derived the
model.

named yaw angle and taken about the vertical z-direction. Moreover, the roll angle α
is the one that motorcycle’s rear plane makes with the vertical one. We take α positive
when the bike leans to the right according to right hand rule (see Fig. 2).

Let (i, j,k) and (iS, jS,kS) be the unit vector sets for the two coordinate systems
respectively and R(θ) and R(α) the rotation matrices:

R(θ) =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 R(α) =




1 0 0
0 cosα − sinα
0 sinα cosα


 . (1)

It is straightforward to obtain that



iS
jS
kS


 = [R(θ)R(α)]T




i
j
k


 . (2)

The model has 4 degrees of freedom: the x and y position of the contact point between
the rear tire and the road expressed in the inertial reference frame; the yaw angle θ and
the roll angle α. Rear and front assembly directions differ by the steering angle δ. In
this paper this angle do not change over time because we assume that the handlebar is
locked over time as specific model feature. So our model can be considered as a single
body one. The input variables of the model are the rear wheel torque Tr and the front
one Tf : both of them can be positive or negative and used as driving torque as well as
braking one. Once again it is worth highlighting the innovative presence of an electric
motor in the front wheel hub of motorcycle to use for stabilization, in addition to the rear
one. Moreover, lateral tire forces have been also included in the model. In what follows,
the symbols cθ, sθ and tθ stand for cos θ, sin θ and tan θ, respectively.

2.1 Mathematical model derivation

The equations of motion are given by Lagrange’s equations:

d

dt

∂L(q, q̇)

∂q̇
− ∂L(q, q̇)

∂q
= Qq, (3)
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Figure 2: Two Degrees of Freedom of the proposed model: yaw angle θ on the left and roll angle α on
the right. Figure also shows forces involved in the model.

where L(q, q̇) = T (q, q̇) − V (q) is the Lagrangian function, T = T (q; q̇) is the kinetic
energy, V = V (q) is the potential energy, Qq = [Qx Qy Qα Qθ]

T is the vector of the
generalized external forces and q = [x y α θ]T is the generalized coordinates vector.

2.1.1 Model Lagrangian function

The kinetic quantities needed to compute kinetic and potential energy are the mass
centre velocity and the system angular velocity. Let G be the mass centre of the body (see
Fig. 1). In its local coordinate system we have GS = (xg, 0, hg). Thus, the mass centre
velocity with respect to the inertial frame Σ is obtained by differentiating the expression
of its inertial position with respect to time:

vG =(ẋ− hgcαsθα̇− (hgsαcθ + xgsθ)θ̇)i + (ẏ + hgcαcθα̇ + (xgcθ − hgsαsθ)θ̇)j+
+ (hgsαα̇)k.

(4)

On the other hand, the angular velocity of system is

ωS = α̇iS + θ̇kS (5)

in the local reference frame.
Now, the kinetic energy of a rigid body is the sum of its kinetic energy associated to

the movement of the centre of mass and the kinetic energy associated to the movement
of the particles relative to the centre of mass, that is,

T = Ttrasl + Trot =
1

2
mvG

2 +
1

2
〈ωS, IGωS〉 (6)

where m is the body mass, IG its inertia tensor in the local reference frame and 〈 , 〉
indicates the scalar product. Substituting the kinematics quantities (4) and (5) in (6),
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the kinetic energy terms become

Ttrasl =
1

2
m
[
h2gα̇

2 +
(
h2gs

2
α + x2g

)
θ̇2 − 2ẋ

(
hgcαsθα̇ + (hgsαcθ + xgsθ)θ̇

)
+

+2hgxgcαα̇θ̇ + 2ẏ
(
hgcαcθα̇ + (xgcθ − hgsαsθ)θ̇

)
+ ẋ2 + ẏ2

]
,

(7a)

Trot =
1

2
(Ixxα̇

2 + 2Ixzα̇θ̇ + Izzθ̇
2), (7b)

and the potential energy is
V = mgGz = mghg cosα. (8)

Using the expressions (7) and (8), the Lagrangian function L of the motorcycle is

L = Ttrasl + Trot − V. (9)

2.1.2 Contact point modelling and generalized external forces

The potential term V (q) of Lagrangian function is the potential associated to external
conservative forces such as the gravity force. On the other hand, the non-conservative
external forces (e.g. friction forces) contribute to generalized forces term Qq =

∑
h Fh

∂Ph

∂q
,

where Ph is the application point of the force Fh. The external active forces acting on
the body are the conservative gravity force P applied at the centre of mass G and the
rear and front wheel thrusts R and F applied at the rear and front contact points P
and Q, respectively. In the local frame the last two forces can be written as R = Ri
and F = F cos δi + F sin δj where R = Trrr and F = Tfrf (rr and rf are the rear and
front wheel radius). The model also includes tyre forces. These forces are generated at
the contact patch between tire and road and are the consequence of the sliding of the
tread rubber on the asphalt surface. For this reason, forces can be calculated using wheel
kinematics and in particular the velocity of the contact point (see Fig. 2). In this work
it has been adopted a linear tire model - the simplest available - where all equations are
linearised with respect to a straight running configuration. Let Ni, i = r, f be the tire
static load. In the considered linear tire model the lateral force has the roll and slip
angles contributions: Flat = (kαα + kλλ)N with λ the slip angle, kα and kλ the roll and
cornering stiffness, respectively. However, the slip angle contribution is smaller than the
roll angle one at low speed and for this reason this second term is neglected here [7, 20].
Longitudinal slips are ignored as well. So, tire forces are reduced to

Fy = kααNf (10)

Fz = −Nf . (11)

Similar formulas hold for rear tire forces. Notice that lateral forces are friction ones.
If p denotes the length of contact line, which does not change over time because the

steering angle is constant, then calculating Qq =
∑

h Fh
∂Ph

∂q
the generalized force terms
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are

Qx = Rcθ + F cos(θ + δ)− Fy sin(θ + δ)−Rysθ; (12a)

Qy = Rsθ + F sin(θ + δ) + Fy cos(θ + δ) +Rycθ; (12b)

Qα = 0; (12c)

Qθ = p(F sin δ + Fy cos δ). (12d)

Finally, applying (3) the Lagrange’s equations of motion of the model are:

m(ẍ− hgcαsθα̈− (hgsαcθ + xgsθ)θ̈ + hgsαsθα̇
2 − 2hgcαcθα̇θ̇+

+(hgsαsθ − xgcθ)θ̇2) = Qx;
(13a)

m(ÿ + hgcαcθα̈− (hgsαsθ − xgcθ)θ̈ − hgsαcθα̇2 − 2hgcαsθα̇θ̇−
−(hgsαcθ + xgsθ)θ̇

2) = Qy;
(13b)

−mhgcαsθẍ+mhgcαcθÿ +
(
h2gm+ Ixx

)
α̈ + (hgmxgcα + Ixz)θ̈−

−mh2gsαcαθ̇2 = mghgsα;
(13c)

−m(hgsαcθ + xgsθ)ẍ+m(xgcθ − hgsαsθ)ÿ + (mhgxgcα + Ixz)α̈+

+ (m(h2gs
2
α + x2g) + Izz)θ̈ −mhgxgsαα̇2 + h2gms2αα̇θ̇ = Qθ,

(13d)

that is a non-linear ODE system which depends on the front and rear longitudinal forces.

3 MODEL VALIDATION AND SIMULATION RESULTS

The mathematical model presented in Section 2.1.2 is an analytical model - dynamically
similar to an inverted pendulum - tuned to capture the coupling between longitudinal
variables (both rear and front driving and braking torques) and capsize mode. The
model should be employed for control design purposes - in case of this work for vehicle
stabilization. For this reason it has been developed a simple model of only four degrees
of freedom that has to be validated by a more complex and complete motorcycle model.

In order to achieve these aims, a control strategy has been designed using the analyt-
ical model and then applied to FastBikeRT, a computer simulation software for real-time
dynamic analysis of motorcycles (distribuited by Dynamotion [21]) used for model vali-
dation. More detailed on the software are presented in Section 3.2.

3.1 Control design

The control system wants to test whether vehicle can be self-balanced by wheel torques
when its initial velocity is zero, the steering axis is locked at a positive angle and the
steering handlebar can not be actuated. This describes the motorcycle initial configuration
after the rider leaves it.

For control design the non-linear second order ODE system (13) of the equations of
motion with generalized coordinates q = [x y α θ]T has been reshaped into a first order
one defining the state vector X = [x y α θ ẋ ẏ α̇ θ̇]T . By recasting, it has been obtained
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Table 1: Numerical values of the motorcycle model parameters

Symbol [SI] Definition Value
p [m] wheelbase 1.416
rf [m] front wheel radius 0.347
rr [m] rear wheel radius 0.318
xG [m] CoM G x-axis local coordinate 0.745
hG [m] CoM G height 0.601
δ [deg] steering angle 40
m [kg] motorcycle mass 130.5
g [m/s2] gravity acceleration 9.806
Ixx [kgm2] inertia tensor term 8.268
Ixz [kgm2] inertia tensor term 0.19
Izz [kgm2] inertia tensor term 21.025
Nf [N] front tire load 678.69
Nr [N] rear tire load 600.69
kα [1/rad] rolling stiffness 0.8
α0 [deg] initial roll angle 4

the following state space representation

X = A(X) +B(X)u (14)

where u = [Tf Tr] is the input vector. Notice that the steering torque is not a control
input. Moreover, both matrix A and B depend on the state vector X that means the
system is non linear. As input vector shown, in the paper only wheel torques can be
used as control inputs to achieve stabilization that is possible due to the rotated steering
axis: this model feature can not be removed. Specifically, for a preliminary study only
front wheel torque has been chosen as system input, whereas the rear one has been set
identically zero during simulations.

Motorcycle is balanced when it has a null roll angle. Thus, roll angle α is the controlled
variable with set-point αs = 0. A PID feedback control scheme has been chosen and
designed as vehicle stability control strategy for its easiness in implementation: the control
gains are KP = 1.5e5, KI = 3e5 and KD = 9e3.

As it will be explained in Section 3.2, the multibody model used for validation process
has three control inputs: rear and front wheel torques and the steering one, but in this
study case the steering axis is locked over time at 40◦. Thus, to reproduce this model
feature it has been added a further PI controller on the steering torque using the steer
error e = δ − 40◦ (δ is the steering angle) with gains KP = 150 and KI = 1e3.

3.2 Model validation

To validate the presented model and analyse whether it captures roll vehicle dynamics,
a equal set of a real motorcycle parameters has been used in both analytical and multibody
model. They are reported in Table 1.
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As stated before, the comparison is made with a computer simulation software for
real-time dynamic analysis of two wheel vehicles, called FastBikeRT and distributed by
Dynamotion [21]. The software has been suitably modified for low speed range where the
model should be validated. Its multibody model includes five bodies - the rear assembly,
the rider, which is rigidly attached to the rear assembly, the front steering assembly, the
rear and the front wheels - three control inputs - front and rear wheel torques and steering
one - and has 9 degrees of freedom - longitudinal, lateral and vertical motion, roll, yaw
and pitch angle, steering rotation and rear and front wheel spin. Moreover, the software
accounts the deformability of tyres using a nonlinear tyre model. On the other hand, the
presented mathematical model and controller are implemented in Matlab/Simulink.

For comparison in validation process, the roll angle is set equal to α = 4◦ at the
beginning of simulation and the PID feedback controller of front wheel torque - designed
by the analytical model - has been tested in the multibody software applying the same
design parameters.
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Figure 3: Comparison of roll and yaw angle simulation responses to PID front wheel torque control
input: model (red dashed line) and simulator (blue solid line).

The designed front wheel controller wants to test whether motorcycle can be self-
balanced by only electric wheel motors when vehicle has null initial velocity and locked
steering axis. Remember that steering torque is not actuated. In Figure 3(a) both red
and blue lines go to zeros in less than 2 seconds that it means the controller stabilizes the
vehicle giving a positive preliminary result for motorcycle stabilization without the use
of steering torque. Moreover, roll angle time history of the two models has an impressive
good match: the same controller can stabilize the motorcycle multibody model of the
software - which is a more complex model - behaving in a similar way with respect to the
response of the analytical one. This indicates that the analytical model captures the main
vehicle roll dynamics, predominant with respect to the other out-of-plane modes at low
speed. Also in the yaw angle response both models reproduce the same linear behaviour,
as reported in Figure 3(b), even though in FastBike it is slightly smaller.
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Figure 4: Simulation results of longitudinal (above) and lateral (below) centre of mass velocity: model
(red dashed line) and simulator (blu line).

The mathematical model has been developed for simulations at low speed: Figure 4
shows vehicle forward velocity keeps low (less than 0.7 m/s in absolute value) during the
whole control action in both models, remaining in the work assumptions.
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Figure 5: Motorcycle trajectory (left) and control signals (right).

In Figure 5(b) it can be seen the two model control signals have a comparable magnitude
and remain below the physical limit imposed by the problem (Tf = 120 Nm) during the
whole simulation time. In addition, the motorcycle track of PID control system applied
to the analytical model is reported in Figure 5(a): rear contact point track shows that
vehicle moves on a curve.
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4 CONCLUSIONS

In the present paper, a four degrees of freedom control-oriented mathematical model
for an autonomous two wheel drive electric motorcycle has been presented. The study has
been carried out under the hypotheses the steering handlebar cannot be actuated, both
rear and front wheel driving and braking torques are available and vehicle moves slowly
(0.1-1m/s). The model has been derived with the specific goal of a model as simple
as possible but able to capture all the dynamics relevant to active stability control of
two-wheeled vehicles.

The model validation with a multibody software has highlighted a good match of the
balancing variable (the roll angle) and this indicates that the presented analytical model
captures the main dynamics of capsize motion. The availability of non linear equations
represents an advantage with respect to the classical Jacobian linearization approach
commonly used in the literature. The model can be employed with advanced non linear
model-based control system design and analysis tools and it is also suitable for MIMO
control strategies taking into account both rear and front torques.
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