
6th European Conference on Computational Mechanics (ECCM 6)
7th European Conference on Computational Fluid Dynamics (ECFD 7)

1115 June 2018, Glasgow, UK

FLUID-STRUCTURE COUPLING OF A LINEAR ELASTIC
MODEL WITH A COMPRESSIBLE FLOW MODEL WITH

MULTILEVEL TIMESTEPPING

Michael Herty1, Siegfried Müller1,2 and Aleksey Sikstel1,3

1 Institut für Geometrie und Praktische Mathematik, RWTH Aachen
Templergraben 55, 52056 Aachen, Germany
herty, mueller, sikstel@igpm.rwth-aachen.de

Key words: Fluid-structure interaction, coupling conditions, linear elastic model, com-
pressible flow

Abstract.
Modeling of cavitation phenomena requires the coupling of models for fluid and solid

materials. For this purpose we employ a strategy based on the solution of coupled Rie-
mann problems that has been originally developed for the coupling of two fluids. The
coupling strategy has been established and validated in [1]. In this work we include
a timestepping algorithm which allows for different timesteps in fluid and solid solvers.
Furthermore, we perform numerical experiments simulating the interface between a plastic
or steel structure and air.

1 Introduction

Cavitation erosion is caused in solids exposed to strong pressure waves developing in
an adjacent fluid field. The knowledge of the transient distribution of stresses in the solid
is important to understand the cause of damaging by comparisons with breaking points
of the material. The modelling of this problem requires coupling of models for fluid and
solid.

The coupling of hyperbolic models has been discussed analytically and numerically
in many recent publications and we refer to [2] for a survey. Particular results for the
coupling of Euler equations with Euler equations exist and have been studied e.g. in [3].
Numerical approaches have been proposed e.g. in [4, 5]. Coupling the dynamic requires
to postulate conditions to be fulfilled at the interface for almost all times t ≥ 0.

One common approach is to iterate the coupling condition in each time step solving
alternately the fluid and the solid model as in [6]. Alternatively, one may use strategy
based on the solution of coupled Riemann problems that has been developed and validated
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in [1]. This concept has been exemplified for the coupling of a linear elastic structure
with an ideal gas. The coupling procedure relies on the solution of a nonlinear equation.
Existence and uniqueness of the solution have been proven. However, the timesteps for
the solvers were synchronised and consequently a very small timestep was imposed in
the fluid solver. In order to avoid redundancy and to improve computational efficiency,
local timestepping methods were considered in [7]. We develop a multilevel local timestep
(MLTS) algorithm in the adaptive Runge-Kutta discontinuous Galerkin (RKDG) solver
[8]. By numerical simulations we will verify the improvement in the computational time
without spoiling the accuracy.

2 Model

Consider a situation as in Figure 1 where an interface separates a material and a
compressible gas. It is assumed that the interface remains unaffected by the interaction
of a gas flow with a material structure [6], i.e. we do not account for deformation of the
structure.

Structure model: we assume that the material properties are sufficiently well de-
scribed by a linear elastic model:

∂ v

∂ t
− 1

ρ
∇ · σ = 0, (1a)

∂ σ

∂ t
− λ(∇ · v) I− µ

(
∇v +∇vT

)
= 0. (1b)

Here, the density of the material is denoted by ρ and assumed to be constant. The defor-
mation velocities are v = (v1, . . . , vd)

T , the stress tensor is denoted by σ = (σij)i,j,=1,...,d =
σT , and the Lamé constants are λ, µ > 0. Finally, the dilatation wave velocity and the
shear wave velocity are c2

1 := (2µ+λ)/ρ and c2
2 := µ/ρ, respectively. Due to the symmetry

of the stress tensor σ, the system of equations (1) contains redundant equations. Those
may be removed and the system can be written in the canonical form of a system of
conservation laws, see equation (29) in the Appendix A of [1].

ΩS ΩF

linear elastic material compressible gas

xI

Γ

n

Figure 1: A sketch of the 2D problem with elastic material on the left and compressible gas on the right.
Shown is the interface Γ (dashed) with its normal direction n starting at xI ∈ Γ and two discretisation
cells aligned with Γ. The coupling of the dynamics will be across the interface in normal direction.
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Compressible model: in the compressible gas regime we assume that the dynamics
are governed by Euler equations

∂ ρ

∂ t
+∇ · (ρv) = 0, (2a)

∂ ρv

∂ t
+∇ · (ρvTv + pI) = 0, (2b)

∂ ρE

∂ t
+∇ · (ρv(E + p/ρ)) = 0, (2c)

where we use the notation ρ for the gas density, v = (v1, . . . , vd)
T for its velocity, E for

the total energy E = e+0.5v2, pressure p and internal energy e. The system is not closed
and an equation of state is required for a complete description, see [9, 10]. Throughout
this work we consider a perfect gas but emphasise that the overall concept extends to
more general gas laws. For a perfect gas we have

p = (γ − 1)ρe (3)

and the speed of sound is given by

c =

√
γ p

ρ
. (4)

Here γ denotes the ratio of specific heats at constant pressure and volume, respectively.
Coupling: across the interface we couple the gas dynamics model (2) to the material

model (1). To this end we project the equations onto the normal direction n of the
interface. For notational convenience we assume the normal direction n = (ni)

d
i=1 pointing

from the material towards the gas regime, see Figure 1. We project the linear elasticity
model in d ∈ {1, 2, 3} spatial dimensions onto direction n ∈ Rd and obtain a quasi–1D
model in the normal direction xn := n · x

∂ u

∂ t
+
∂ fn(u)

∂ xn
= 0, fn(u) :=

d∑
i=1

f i(u)ni. (5)

Here u and f i are defined in Appendix A of [1]. The eigenvalues of the projected system
(5), see equation (35) in the Appendix A of [1], are independent of the direction n.

Similarly, we project the gas equations (2) onto n. Provided there is no flow of gas in
tangential directions x̃i+1 = x ·ti, i = 1, . . . , d−1, the system (2) reduces to the projected
system:

∂ ũ

∂ t
+
∂ fn(ũ)

∂ xn
= 0, (6a)

ũ := (ρ, ρṽ, ρE)T , ṽ := (n · v, t1 · v, . . . , td−1 · v)T , vn := n · v, (6b)

fn(ũ) :=
d∑

i=1

fi(ũ)ni =

 ρvn
ρvnṽ + pn

ρvn(E + p/ρ)

 , (6c)
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where fi are defined in equation (40b) in Appendix B of [1]. Since both systems (5) and
(6) are invariant under rotation and reflection, it is sufficient to consider the projection
onto direction n = e1 = (1, 0, . . . , 0)T ∈ Rd, see Figure 1.

The basic problem is now to couple the projected systems at the interface Γ. The
projected linear elastic model is defined in ΩS and the projected Euler equations in ΩF .
Depending on the coupling conditions different wave patterns might be observed [11].

According to the transition conditions of continuum mechanics at a material interface
we model the coupling by requiring the following conditions to be fulfilled at the interface:

nTσn ≡ σnn
!

= −p, (7a)

vTn ≡ vn
!

= vn ≡ vTn, (7b)

neglecting viscosity and heat conduction in the gas flow. The conditions prescribe an
equal stress and pressure at the interface. Also, we assume that across the interface the
normal velocities are equal. The conditions (7) are referred to as transition and kinematic
or coupling conditions, respectively.

The conditions (7) are used to provide boundary condition at some point xI ∈ Γ of the
interface for both the structure and the fluid. The procedure is described in Algorithm 1.

Algorithm 1 Coupling Conditions

1: Let uL = u(xI−, t) and uR = u(xI+, t) be the attached interfacial states for the
structure and the fluid, respectively, at the interface point xI ∈ Γ and time t.

2: Solve the coupled Riemann problem at xI in normal interfacial direction n of the
interface consisting of two half Riemann problems, i.e. find parameters ε∗ and θ∗ such

that (7) holds for states u(ε) := L
+

1 (ε,uL) on the forward Lax curve L
+

1 corresponding
to the lowest characteristic speed in the structure and u(θ) := L−3 (θ,uR) on the
backward Lax curve L−3 corresponding to the fastest characteristic speed in the fluid.

3: Evaluate the Lax curves with respect to ε∗ and θ∗ to determine the boundary values
u = u(ε∗) and u = u(θ∗) for the structure and the fluid, respectively.

Remark 2.1. In [1] we proved that there exists a unique solution to the coupled Riemann
problem in Step 2 of Algorithm 1 provided that the fluid state uR is subsonic and, moreover,
the initial states uL and uR satisfy some constraint given in Theorem 3.1 of [1].

3 Multilevel Timestepping

Depending on the material parameters the wave speeds in the solid may become sig-
nificantly higher than in the fluid. Since the governing equations are hyperbolic a smaller
time step for the solid solver is required provided an explicit scheme is used for time
discretisation. In previous work [1] computations were performed synchronising the fluid
and the solid solver by setting the minimum of the timesteps globally. This approach
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∆tS

∆xS ∆xF

∆tF

0

– solid information
– coupling

– fluid information
– RK stage
– substages

– interface

Figure 2: Sketch of MLTS. ∆xS and ∆xF represent the cell size, ∆tS and ∆tF � ∆tS the timesteps.
Subscripts S and F indicate solid and fluid, respectively.

entails a large amount of superfluous time steps in the fluid solver. For instance, the
sound speed in stainless steel is approximately 5790m

s
while in air merely 343m

s
, thus 4

out of 5 timesteps in the fluid solver might be redundant.
The timestepping is executed by means of explicit Runge-Kutta (RK) schemes with

MS stages in the solid part and MF stages in the fluid part with nodes {αm
S }m∈{1,...,MS}

and {αm
F }m∈{1,...,MF }, respectively. Let ∆tS denote the timestep in the allegedly faster

propagating solid and ∆tF � ∆tS in the fluid. We propose a multilevel timestepping
method that preserves the timestep size required by each solver, i.e. avoiding unnecessary
time steps.

The MLTS procedure is sketched in Figure 2. It performs as follows: the solver for
the solid material performs timesteps until the time of the first RK-stage of the fluid is
reached. Next, the two solvers are synchronised by computing the RK-stage in the fluid
(dashed line). The calculations in the solid proceed until the next RK-stage in the fluid
is met (solid line). Each RK-stage demands for information at the boundary, especially
for coupling conditions at the interface computed by Algorithm 1. While computing the
RK-stages for the solid the only known information from the fluid to start is by the most
recent computed RK-stage. In order to preserve accuracy substages are introduced in the
fluid cells adjacent to the interface, i.e. in the fluid boundary layer of the interface. Due
to the CFL-condition information coming from the interface cannot pass the boundary
layer. Still, this method introduces some discretisation error. This is due to the fact that
the solution in the fluid apart from the boundary layer is assumed to be constant between
two RK-stages. Algorithm 2 summarises the procedure.
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Algorithm 2 MLTS for Coupled RKDG

1: ∆tS ← getDt(solid)
2: ∆tF ← getDt(fluid)
3: if ∆tS < minm(αm

F )∆tF then
4: ΣS ← ∆tS . Total time passed in solid

5: for m ∈ {1, . . . , MF} do
6: while ΣS ≤ αm

F ∆tF do . As long as solid has not met the next RK-stage in fluid

7: for k ∈ {1, . . . , MS} do . Calculate RK-stages in solid

8: Call RK-stage(solid) . Evaluate coupling conditions to obtain boundary conditions

9: Call Substage(fluid) . Evaluate coupling conditions to obtain boundary conditions

10: end for
11: ∆tS ← min{getDt(solid), αm

F ∆tF − ΣS}
12: ΣS ← ΣS + ∆tS
13: end while . Now solid has reached the k-th RK stage of fluid

14: ΣS ← 0 . Next stage

15: Call RK-stage(fluid) . Evaluate coupling conditions to obtain boundary conditions

16: end for
17: else . optimisation possible

18: ∆tF ← min{∆tF ,∆tS}
19: ∆tS ← ∆tF
20: synchronised calculations
21: end if

4 Numerical Experiments

In order to solve the coupled problem consisting of the linear elastic model and the
compressible Euler equations we apply to both systems a RKDG method [12]. The per-
formance is enhanced by local multi-resolution based grid adaptation, see [13]. Details
can be found in [8, 14]. The solver is implemented in the Multiwave library [15]. The
coupling procedure is carried out by computing the intersection of particular Lax curves
of the linear elastic system and the Euler equations at the interface according to Algo-
rithm 1. Whereas in [1] we used a synchronised timestepping procedure at the interface,
we now apply our new multilevel timestepping procedure given by Algorithm 2. So far,
it has only been implemented for one-dimensional spatial domains.

For the solid solver and the fluid solver we apply a third order DG scheme using
polynomial elements of order p = 3 and a third-order SSP-Runge-Kutta method with
three stages for the time-discretisation [16]. Both solvers use the same numerical flux,
applied in the interior of each domain, and limiter, namely, the local Lax-Friedrichs flux
and the minmod limiter from [12]. The synchronised timestepping procedure is compared
to the multilevel timestepping procedure.

For our computations we choose plastic and stainless steel with parameters as in Table 1
for the linear elastic model. For the fluid we consider air with material parameters for
the ideal gas γ = 1.4 and cv = 717.5 J/(kg ·K).
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parameter plastic steel
density ρ [ kg/m3] 1226 7800
Lamé constant λ [N/m2] 1.4093× 109 9.3288× 1010

Lamé constant µ [N/m2] 1.4093× 109 9.3288× 1010

dilatation wave velocity c1 [m/s] 1857.02 5990
shear wave velocity c2 [m/s] 1072.15 3458

Table 1: Material parameters.

Having cavitation phenomena in mind we simulate a shock in the fluid moving towards
the solid. The computational domain is ΩS = [0, 1] m for the linear elastic system and
ΩF = [1, 2] m for the Euler system. In each domain we use a base grid of 50 cells and
L = 10 levels of refinement. Thus, the uniformly refined grid would consist of 50×210 cells
that are never used in the course of the computation. However, due to grid adaptation
the locally refined grids consist of about 100 cells. The CFL number is set to 0.1 and the
final time is T = 20µs for plastic and T = 10µs for steel. For the linear elastic material we
use uniform initial data uL in ΩS for both plastic and steel. In ΩF we set up a Riemann
problem at x∗ = 1.025 with data u1 in {x ∈ ΩF : x < x∗} and u2 in {x ∈ ΩF : x ≥ x∗}.
The data is listed in Table 2.

Plastic or Steel Fluid
uL u1 u2

v1 [m/s] 0.0 v1 [m/s] 0.0 -27.6
σ11 [N/m2] -100000 p [N/m2] 100000 111864.4

ρ [kg/m3] 1.2 1.3

Table 2: Initial data for 1D validation test case.

To validate the coupling condition for the steel case we present in Figure 3 the negative
stress −σ1,1 and the pressure p in the elastic material and the gas, respectively. The
velocities v1 and v1 perform analogously and, thus, are not shown here. We note that the
velocities as well as the negative stress and the pressure are continuous at the interface
located at x = 1 m confirming the coupling conditions (7). For the plastic case the results
are similar and are omitted here.

We have performed several computations with increasing spatial and temporal resolu-
tion by a factor two with each additional refinement level. In Figure 4 and in Figure 5
we summarise the convergence behaviour for the plastic and steel case, respectively. The
error is computed separately in the elastic material and the fluid where the L1-error is
computed as

∫
Ω
|uL(x)− u(x)|dx with uL and u denoting the DG solution for refinement

level L and the exact solution, respectively. Additionally, we compute the empirical order
of convergence EoC = − log2(eL+1/eL) from the error.

For the steel case one can observe that the MLTS timestepping procedure adds to the
discretisation error while in the case of plastic MLTS reduces the L1-error. The EoC is
about 0.95 for both the solid and the fluid part of the plastic case and about 1.0 for the
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steel air negative stress pressure discretization level

x x

−σ|p

Figure 3: Pressure p (right) and negative stress −σ (left). Simulation of steel and air interaction, a
shock in air (right) is moving towards the steel structure (left). From left to right, top to bottom the
times presented are t = 56.6µs, . . . , 87.63µs equidistantly distributed. Below each timestep the local
refinement discretisation level l of each cell is plotted. The cell width is 50× 2−l, i.e. the higher the level
the smaller the cell.

steel case. Hence, applying the MLTS timestepping does not harm the convergence order
in our test cases.

Since the solution exhibits discontinuities, the order of convergence in the L1-norm is
typically smaller than 1. For scalar one-dimensional conservation laws rigorous a-priori
error estimates provide a convergence order of 0.5, e.g., [17, 18].

We observe that the MLTS timestepping procedure saves about 90% of the timesteps
in the fluid compared to the synchronised method for plastic and about 95% for stainless
steel.
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Figure 4: Convergence behaviour of plastic and air. On the vertical axes: L1-error of the respective
variable (from left to right, top to bottom: v,σ, ρ, v, p. On the horizontal axis: maximal refinement
factor, i.e. corresponding maximal number of cells is 50× 2l where l ∈ {4, 5, . . . , 8}.
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Figure 5: Convergence behaviour of steel and air. On the vertical axes: L1-error of the respective
variable (from left to right, top to bottom: v,σ, ρ, v, p. On the horizontal axis: maximal refinement
factor, i.e. corresponding maximal number of cells is 50× 2l where l ∈ {4, 5, . . . , 8}.
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5 Outlook

In this work the MLTS procedure was implemented for a one-dimensional spatial do-
main. It will be extended to 2D and 3D in the future. For the more realistic scenario of
cavitation damaging the coupling procedure has to be extended where instead of an ideal
gas we use a stiffened gas in the compressible Euler equations.

A drawback in Algorithm 2 is the assumption that the timestep in the linear elastic
model solver has to be less than one RK-stage of the fluid model. If this assumption is
violated Algorithm 2 does not use MLTS but the synchronised timestepping. Applying
a simple optimisation procedure for selecting a timestepping method would render this
assumption unnecessary.

Finally, a consistency analysis is required in order to investigate the additional error
introduced by the MLTS.
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