
6th European Conference on Computational Mechanics (ECCM 6)
7th European Conference on Computational Fluid Dynamics (ECFD 7)

1115 June 2018, Glasgow, UK

A MODIFIED SEARCH DIRECTION METHOD WITH
WEAKLY IMPOSED KARUSH-KUHN-TUCKER

CONDITIONS FOR GRADIENT BASED CONSTRAINT
OPTIMIZATION FOR VERY LARGE PROBLEMS

Long Chen1, Armin Geiser1, Roland Wüchner1 and Kai-Uwe Bletzinger1
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Abstract. Motivated by the applications of the Vertex Morphing method [1] for very
large shape optimization problems, where various response evaluations and multiple phy-
sics are often considered in a constrained optimization, we propose a robust modified
search direction method for the optimization procedure. The solution of a general con-
strained gradient-based optimization problem satisfies the necessary Karush-Kuhn-Tucker
(KKT) conditions [2]. There exist numerous methods to solve constrained optimization
problems, which try to travel along the active constraint to find the local minimum [2][3].
This might lead to inefficiency in the optimization process for very large problems. In the
proposed method, the KKT conditions are weakly imposed in each optimization step. The
search direction is modified and designed to find a solution where the KKT conditions can
be better fulfilled compared using the steepest descent direction. To accomplish this, the
singular-value decomposition method [4] is applied to both the objective and constraint
sensitivity. The results are shown first with analytical 2D problems and then the results
of shape optimization problems with a large number of design variables are discussed. In
order to robustly deal with complex geometries, the Vertex Morphing method is used.

1 INTRODUCTION

In the practice of shape optimization using the Vertex Morphing method [1], a large
number of design variables is often considered in a constrained optimization. The opti-
mization problem as well as the constraints can be highly non-linear. Various methods
can be used for constrained optimization, such as the feasible direction method, gradient
projection method, Sequential Linear Programming (SLP) and Sequential Quadratic Pro-
gramming (SQP). When treating inequality constraints, the active-set strategy is widely
used in the above mentioned method, since it can conveniently generalize the equality
constraint to an inequality constraint [3]. The optimization algorithms utilize the stee-
pest descent direction c = −∆fT (x) of the unconstrained problem f(x) as the search
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direction if there is no active constraint. When the constraints are active, their effect are
then included in calculating the search direction. The algorithms try to find a local mini-
mum by traveling along the active constraint. In the context of shape optimization with
a large number of design variables, due to the high nonlinearity of the optimization pro-
blem as well as a high requirement regarding the mesh quality, the existing optimization
algorithms might result in inefficiency in the optimization procedure. In the present work,
we propose a modified search direction method: instead of using the steepest-descent di-
rection when there is no active constraint, we consider the impact of the constraint. The
search direction is modified so that the Karush-Kuhn-Tucker (KKT) gradient conditions
can be better fulfilled in the next iteration compared to the steepest-descent direction.
This is accomplished by using the singular-value decomposition method for the objective
and constraint gradients. The proposed method is demonstrated using 2D analytical
constrained optimization examples. Moreover, selected results of shape optimizations of
shells with Vertex Morphing method with various geometrical constraints are discussed.

2 Karush-Kuhn-Tucker optimality conditions

The necessary conditions for an equality- and inequality-constrained problem can be
summed up in what are commonly known as the Karush-Kuhn-Tucker (KKT) optimality
conditions. The KKT conditions are repeated as follows for the sake of clarity [2]:

Let x? be a regular point of the feasible set that is a local minimum for f(x), subject
to hi(x) = 0; i = 1 to p; gj(x) ≤ 0; j = 1 to m. Then there exist Lagrange multipliers λ?

(a p-vector) and µ? (an m-vector) such that the Lagrangian function is stationary with
respect to xk, λi, and µj at the point

1. Lagrangian function for the problem written in the standard form:

L(x,v,u, s) =f(x) +

p∑
i=1

λihi(x) +
m∑
j=1

µjgj(x)

=f(x) + λTh(x) + µTg(x)

(1)

2. Gradient conditions:

∂L

∂xk
=

∂f

∂xk
+

p∑
i=1

λ∗i
∂hi
∂xk

+
m∑
j=1

µ∗
j

∂gj
∂xk

= 0; k = 1 to n (2)

∂L

∂λi
= 0⇒ hi(x

∗) = 0; i = 1 to p (3)

∂L

∂µj

= 0⇒ gj(x
∗) = 0; j = 1 to m (4)

3. Feasibility check for inequalities:

hi(x
∗) = 0; i = 1 to p; gj(x

∗) ≤ 0; j = 1 to m (5)
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4. Switching conditions:
µ∗
jgj(x

∗) = 0; j = 1 to m (6)

5. Non-negativity of Lagrange multipliers for inequalities:

µ∗
j ≥ 0; j = 1 to m (7)

6. Regularity check: Gradients of the active constraints must be linearly independent.
In such a case the Lagrange multipliers for the constraints are unique.

3 Singular-value decomposition

In the proposed method, the KKT optimality conditions are weakly imposed in the
determination of the search direction at each iteration. To accomplish this, the singular-
value decomposition (SVD) method is used. Therefore, a short review on the SVD method
is given in this section.

3.1 Basics on singular-value decomposition

The singular-value decomposition is the generalization of the eigendecomposition of a
positive semidefinite normal matrix to any m × n matrix via an extension of the polar
decomposition [4]. Formally, the singular-value decomposition of an m×n real or complex
matrix M is a factorization of the form UΣV∗,

M = UΣV∗ (8)

where M is a m × n real or complex matrix, U is a m × m real or complex unitary
matrix, Σ is a m× n rectangular diagonal matrix with non-negative real numbers on the
diagonal, V is a n×n real or complex unitary matrix and V∗ is the conjugated transpose
of V.

The diagonal entries σi of Σ are singular values of M. The columns of U and the
columns of V are called the left-singular vectors and right-singular vectors of M, re-
spectively.

Since U and V∗ are unitary, the columns of each of them form a set of orthonormal
vectors, which can be regarded as basis vectors. The matrix M maps the basis vector
Vi to the stretched unit vector σiUi. By the definition of a unitary matrix, the same
is true for their conjugated transposes U∗ and V, except the geometric interpretation
of the singular values as stretches is lost. In short, the columns of U, U∗, V, V∗, are
orthonormal basis.

3.2 Use of SVD to analyze input-output systems

Any real matrix A ∈ Rm×n defines an input-output system as follows

z = Ay (9)

with z ∈ Rn denoting the output vector and y ∈ Rm denoting the input vector.
Singular-value decomposition of the matrix A can be used to analyze the input-output
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system,

A = UΣVT =

min(m,n)∑
i=1

σiuiv
T
i (10)

Assume that an input vector corresponds to the k − th right singular vector, which is
scaled by a factor d with y = dvk. Due to the fact that ui and vi are orthonormal bases
we can obtain the output vector as follows [6],

z =

min(m,n)∑
i=1

σiuiv
T
i

yk = dσkkuk (11)

with ‖z‖2 = ‖dσkkuk‖2 = dσkk .

4 The SVD modified search direction method

In the present method, we propose a new way for finding the search path towards
the local minimum. Instead of using the steepest descent direction of the unconstrained
problem in the feasible domain (i.e. there is no active constraint), we take the inactive
constraint into account and use it to modify the search direction. The goal is to find a
searching path, which can possibly avoid the part of traveling along the active constraint
and find the local minimum in a robust way.

4.1 Singular-value decomposed objective and constraint sensitivity

The gradients of the objective and the constraint can be obtained by sensitivity ana-
lysis. Let the row vector c and a represent the gradients of the objective and inequality
constraint, respectively. They are given as:

c = ∇f =
(

∂f
∂x1

∂f
∂x2

... ∂f
∂xn

)
(12)

a = ∇g =
(

∂g
∂x1

∂g
∂x2

... ∂g
∂xn

)
(13)

We construct the sensitivity matrix m from the normalized objective sensitivity ĉ and
the normalized constraint sensitivity â:

m =

(
ĉ
â

)
(14)

We apply singular-value decomposition as shown in equation (8) to the sensitivity
matrix m,

m = usv∗ (15)

where matrix u contains the left-singular column vectors and v contains the right-singular
vectors of the sensitivity matrix m. We write the i − th left-singular column vector ui,
the i− th singular value si, and the i− th right-singular column vector vi in a set mi
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mi = {ui, si,vi} (16)

We denote the set mi as the i− th design mode of the sensitivity matrix m.

4.2 A 2D analytical example demonstrating the SVD modified search di-
rection method

A 2D analytical optimization example is introduced and will be used to demonstrate
the proposed method.

Consider the following analytical optimization problem,
Minimize

(x1 − 2)2 + (x2 − 2)2, (17)

which is subject to the constraint

− 1

10
(x1 − 3)2 − x2 + 3 ≤ 0. (18)

4.2.1 Singular-value decomposition of the sensitivity matrix m

We choose an initial design x0 = (−12,−4) and its sensitivity matrix can be calculated

m0 =

(
−0.9191 −0.3939
0.9487 −0.3162

)
(19)

Applying SVD to the sensitivity matrix m0 we obtain the right-singular vectors v1 and
v2,

v1 =

(
0.9991
0.0416

)
v2 =

(
−0.0416
0.9991

)
(20)

the left-singular vectors u1 and u2,

u1 =

(
−0.7071
0.7071

)
u2 =

(
−0.7071
−0.7071

)
(21)

as well as the singular values,

s1 = 1.3219 s2 = 0.5026 (22)

Recalling the properties discussed in the section 3.2, we can interpret the two design
modes as follows:

- the first design mode m1 = {u1, s1,v1} : by taking δv1 as design change, we can
obtain a change in objective as well as in constraint function δJ = s1δu1, which is
a decrease in the objective function and an increase in the constraint function. We
denote the first mode as the primal mode.
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Figure 1: 2D analytical optimization with the design modes

- the second design mode m2 = {u2, s2,v2} : by taking δv2 as design change, we can
obtain a change in objective as well as in constraint function δJ = s2δu2, which is
a decrease in both the objective and the constraint function. We denote the second
mode as the dual mode.

The two design changes v1 and v2 from the design modes are illustrated in figure 1.
The circles in figure 1 indicate the contour lines of the objective function described in
equation (17) and the parabola indicates the constraint described in equation (18).

Recall that at the local optimum, the design satisfies the necessary KKT condition as
described in the section 2. We are especially interested in the gradient conditions described
in equation (2). Rewriting the KKT gradient condition for our analytical example we get

c = µa (23)

where µ is the Lagrange Multiplier.
In this case, by applying SVD to the sensitivity matrix we obtain v1 = αâ with α ∈ R

and v2 = 0 since the normalized objective gradient and normalized constraint gradient
are parallel.

4.2.2 Modified search direction using the design modes

We denote the angle between v1 and −ĉ as α1 and the angle between v2 and −ĉ as
α2. Thus we can rewrite the normalized steepest descent direction −ĉ as

−ĉ = cosα1v1 + cosα2v2 (24)

In order to get a design which better fulfills the KKT gradient condition in the next
iteration compared to using the steepest descent direction, we modify the search direction
as

s = cosα1v1 + c cosα2v2 (25)
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Figure 2: 2D analytical optimization with different parameter c

where the factor c > 1 is introduced to enlarge the contribution of the dual mode design
change v2. We define the factor c as duality factor and its influence on the optimization
procedure is demonstrated in the following subsection.

4.2.3 Results of the 2D analytical example

Applying the SVD modified search direction method we obtain the results of the 2D
analytical optimization problem illustrated in subsection 4.2. In figure 2 we show the dif-
ferent optimization progresses for different duality factors c. It can be obviously observed,
the bigger the duality factor c is chosen, the bigger is the impact of the constraint gradient
on the modified search direction. It should be noted, however, that it is not guaranteed
to achieve the local minimum with every duality factor c > 1.

Figure 3 shows the optimization progresses with different initial designs. The duality
factor c = 5.0 is chosen. Starting from the six different initial designs, the SVD modified
search direction method can successfully achieve the local minimum.

5 Vertex Morphing method for shape optimization

In the present work, the SVD modified search direction method is applied in node
based shape optimization with a large number of design variables. In order to robustly
deal with complex geometry, the Vertex Morphing method [1][5] is used. It is shortly
reviewed in the following.

The idea of Vertex Morphing is to control the surface nodes x = [x1, x2, ..., xn] with a
design control field s = [s1, s2, ..., sn], filtered with a filter function A(x, x0, r). The filter
radius r acts as a design handle and controls the smoothness of the resulting surface. The
so called forward mapping step using the linear mapping matrix A is defined as follows,
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Figure 3: SVD modified search direction optimization with the duality factor c = 5 applied for different
initial designs

xi = Aijsj (26)

Similarly, the change of the control field δs is mapped on to the change of the design
surface δx

δxi = Aijδsj (27)

The nodes of the control field are the design variables of the gradient based optimiza-
tion. Following the chain rule of differentiation, the sensitivities of the response J w.r.t.
the geometry x are backward mapped to the design control field using the adjoint or
backward mapping matrix A∗, with A∗ = AT for regular grids.

dJ

dsi
=

dJ

dxj

dxj
dsi

= Aji
dJ

dxj
(28)

Using equations (27) and (28) the design surface is modified iteratively, ensuring smooth
shape updates.

6 Numerical example of large shape optimization problem

The presented method has been tested through several constrained shape optimization
problems. The example shown is a 3D shell structure under static loading illustrated in
figure 4. The cylinder shell with a radius R = 10 and a thickness t = 1 is supported
with a fixed support at the left bottom edge and a roller support at the right. A single
point load p = 1e5 is applied at the center of the shell structure. The Young’s Modulus
E = 2.068e11 and the Poisson’s ratio µ = 0.29 are assigned to the shell material property.
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p = 1e5

L = 20

R = 10

E = 2.069e11

µ = 0.29

t = 1

Figure 4: 3D shell structure unconstrained strain energy optimization

A linear elastic static analysis is carried out and a co-rotational 3-node shell element
based on the Assumed Natural Deviatoric Strain formulation is used. The strain energy
is set to be the objective function, while different geometrical constraints are considered.
The shape of the structure is optimized and the Vertex Morphing method is used.

6.1 Unconstrained strain energy optimization for 3D shell structure

Carrying out the unconstrained optimization with the Vertex Morphing technology,
where the steepest-descent direction of strain energy objective function with a fixed step
size is used as design update, a result characterized by a filter radius r can be obtained.
This is illustrated in figure 5 on the right side. After 61 steps the optimization is converged
to a local minimum and the strain energy is decreased to 1.99% of the initial design.

6.2 Constrained strain energy optimization for 3D shell structure with one
geometrical constraint

We add a geometric constraint to the unconstrained problem discussed in the previous
subsection 6.1. The geometric constraint is a sphere as is shown in figure 6. In order to
apply the SVD modified search direction method, we add an artificial gradient for the
geometric constraint,

∂g

∂xi
=
∂d2

∂xi
(
b− d
b

)p (29)

where d is the distance function, b is the predefined distance in which the geometric
constraint gradient is calculated (d ≤ b), and p ∈ R is the exponential factor which
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Figure 5: 3D shell structure unconstrained strain energy optimization

Figure 6: 3D shell structure initial design with spheric geometry constraint

penalizes the gradient.
The optimization converged after 66 steps and the strain energy is reduced to 4.04% of

the initial design. The optimized geometry is shown in figure 7. The objective function
value for the initial design is at a local maximum, due to the flat shape of the shell
structure. By weakly imposing the KKT gradient conditions, the algorithm is aware of
the incoming constraint and be able to take another path before the constraint gets active.

The optimization problem and the constraint of this example is highly non-linear. By
taking the constraint information into account a priori, the whole optimization progress
is regularized and is therefore smooth. As can be seen in the optimization result, the
shape of the whole structure morphs according to the incoming constraint due to the
regularization of the optimization problem. A sudden change in design update due to the
KKT switching conditions as described in equation (6) is therefore avoided.

6.3 Constrained strain energy optimization for 3D shell structure with two
geometrical constraints

We add a second sphere geometric constraint to the constrained optimization problem
discussed in the previous subsection as is shown in figure 8. The optimization converged
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Figure 7: Optimized design for the 3D shell structure with spheric geometry constraint

Figure 8: 3D shell structure initial design with two spheric geometry constraint

after 49 steps and the strain energy is reduced to 2.56% of the initial design. The structure
morphs towards a local minimum where a violation of the two geometrical constraints is
effectively avoided. Again, one identifies the regularization of the constrained optimization
problem, the overall shape morphs smoothly with the goal reducing the objective value
and keeping the constraints from being violated. Compared to the example with single
geometrical constraint, a better local minimum is obtained due to the high nonlinearity
of the optimization problem.

7 Conclusions

In the present work, a modified search direction method for constrained optimization is
developed. We construct the modified search direction in feasible domain by utilizing the
primal and dual mode computed by the singular-value decomposition of the sensitivity
matrix. The duality factor is introduced in order to enlarge the contribution of the dual
mode, such that the KKT gradient conditions can be better fulfilled at the next iteration
compared to the direct use of the steepest descent search direction. Various constrained
optimization examples show that the proposed method finds local minimums by properly
avoiding the constraint violations.
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Figure 9: Optimized design for the 3D shell structure with two spheric geometry constraint

The proposed algorithm regularizes the constrained optimization problem and provides
smooth design updates. A discontinuity in the search direction resulting from the KKT
switching condition compared to active-set strategy can be effectively avoided. It is shown
in the results that the proposed method is very promising when dealing with highly non-
linear, large optimization problems.

REFERENCES

[1] Bletzinger, K.-U., A consistent frame for sensitivity filtering and the vertex assigned
morphing of optimal shape. Struct. Multidiscip. Optim. (2014) 49:873–895.

[2] Arora, J. S. Introduction to Optimum Design. Academic Press, 3rd Edition, 2011.

[3] Gallagher, R.H. and Zienkiewicz, O.C. Optimum Structural Design. John Wiley &
Sons, 1973.

[4] Banerjee, S. and Roy, A. Linear Algebra and Matrix Analysis for Statistics. CRC
Press, 2014.

[5] Hojjat, M., Stavropoulou, E. and Bletzinger, K-U., The Vertex Morphing method
for node-based shape optimization. Comput. Methods Appl. Mech. Eng. (2014) 268:
494–513.

[6] Gerzen N. Analysis and Applications of Variational Sensitivity Information in Struc-
tural Optimisation. PhD Thesis, Dortmund University of Technology, 2014.

12


