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Abstract. The Navier-Stokes equations describe the motion of viscous fluids. In order to
predict turbulent flows with reasonable computational time and accuracy, these equations
are spatially filtered according to the large-eddy simulation (LES) approach. The current
work applies a volume filtering procedure according to Schumann [1]. To demonstrate
the procedure the Schumann filter is first applied to a convection-diffusion equation. The
Schumann filter results in volume-averaged equations, which are not closed. To close these
equations a model is introduced, which represents the interaction between the resolved
scales and the small subgrid scales. Here, the anisotropic minimum-dissipation model
of Rozema et al. [2] is considered. The interpolation scheme necessary to evaluate the
convective flux at the cell faces can be viewed as a second filter. Thus, the convection
term of the filtered convection-diffusion equation can be interpreted as a double-filtered
term. This term is approximated by the scale similarity model of Bardina et al. [3]. Thus,
a mixed minimum-dissipation-Bardina model is obtained. Secondly, the mathematical
methodology is extended to the Navier-Stokes equations. Here, the pressure term is
analyzed separately and added to the convection-diffusion equation as a sink term. Finally,
spatially filtered Navier-Stokes equations that depend on both the anisotropic minimum-
dissipation (AMD) model proposed by Rozema et al. [2] and the scale similarity model
of Bardina et al. [3] are obtained. Hence, a mathematically consistent method of mixing
the AMD model and the Bardina model is achieved.

1 INTRODUCTION

The continuous downscaling of integrated circuits has led to the ongoing increase of the
available computational power. Although this growth enables the direct computation of
increasingly complicated flows, most practical turbulent flows still cannot be directly com-
puted from the Navier-Stokes equations. Therefore, simulation approaches that reduce
the number of degrees of freedom are in constant development.

The current work is based on the large-eddy simulation LES approach. This method
aims for the best compromise between required computational time and achieved accuracy
through a spatial filtering of the Navier-Stokes equations. The turbulence spectrum is,
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then, divided into large and small scales of motion. The former are directly computed,
while the latter are modeled.

The filtering process is usually carried out by the application of a convolution filter.
This work applies the volume balance procedure proposed by Schumann [1]. In this ap-
proach, the governing equations, i.e., conservation of mass and momentum, are implicitly
filtered according to a Schumann box filter, which is equivalent to the process of averag-
ing these equations over the grid volumes. Like the conventional filtering approach, the
application of the Schumann box filter leads to a new term in the momentum equation:
the subgrid-scale stress tensor. This term accounts for the effect of the subgrid modes
on the resolved part of the flow, that is, on the large eddies. However, the subgrid-scale
stress tensor is not closed, since it is not solely expressed in terms of resolved quanti-
ties. Therefore, a closure model is needed before actual large-eddy simulations can be
performed. This closure is achieved by modeling the subgrid-scale stress tensor according
to functional, structural or mixed models [4].

Functional models aim at correctly predicting the kinetic energy transfer between the
resolved and subgrid eddies. Although these models can produce the correct average
energy removal from the large eddies, they poorly represent the effects of the small eddies
on the large ones on a local basis. Moreover, they do not describe accurately the structure
of the subgrid-scale stress tensor, leading to low correlations between exact and computed
subgrid-scale stress tensors [4] (see Clark et al. [5] and Bardina et al. [3]).

Eddy viscosity models are the most applied functional models and are usually easily
implemented. A dissipative term, which has a similar effect as the subgrid-scale stress
tensor, is introduced. This term is based on the Boussinesq approximation [6], which
establishes the concept of an eddy viscosity. The Smagorinsky [7] and the anisotropic
minimum-dissipation [2] models are examples of eddy viscosity models.

Structural models, on the other hand, aim at a mathematical reconstruction of the
subgrid stress tensor. They are based on formal series expansions of the unknown terms,
transport equations, approximative deconvolution procedures or scale similarity argu-
ments in order to achieve a high-fidelity representation of the subgrid-scale stress tensor,
also with regard to the eigenvectors of the exact tensor [4]. Therefore, these models are
characterized by higher correlations between the exact and the approximated unresolved
stress tensors when compared to functional models (see Bardina et al. [3]).

Scale similarity models are structural models that are frequently applied to approxi-
mate the subgrid-scale stress tensor. These models are based on the similarity between
neighboring energy bands in the inertial subrange [8], assuming that the turbulent ki-
netic energy of the unresolved scales can be approximated by the turbulent kinetic energy
contained in the smallest resolved eddies. Although scale similarity models such as the
Bardina model [3] are characterized by high local correlations between the modeled and
the exact subgrid-scale stress tensor, these models do not dissipate enough energy. Hence,
they are often supplemented with an eddy viscosity model, forming a mixed model.

Mixed models are based on a linear combination of functional and structural models.
This type of model generally arises from an ad hoc combination of an eddy viscosity model
with a scale similarity model, in order to counteract specific model limitations. In partic-
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ular, mixed models are aimed at obtaining good results on both the energy and structural
levels [4]. For instance, Bardina et al. [3] proposed the linear combination of their scale
similarity model with the Smagorinsky model [7], achieving a good representation of the
local subgrid-scale stress tensor, as well as the mean energy balance for homogeneous
isotropic turbulence and homogeneous turbulence in the presence of mean shear. More-
over, Vreman et al. [9] simulated a weakly compressible temporal mixing layer with solely
structural and functional models, as well as with mixed models. Improved results were
achieved for the combination of the Bardina model with the dynamic Smagorinsky model
(see Germano [10]).

Existing mixed models mostly resulted from an ad hoc process of combining eddy
viscosity and scale similarity models. This process, however, is not consistent with the
derivation of these models [8]. Hence, this work aims to provide the basis for a mathemat-
ically consistent combination of eddy viscosity and scale similarity models. In particular,
the combination of the scale similarity model of Bardina et al. [3] with the anisotropic
minimum-dissipation model (AMD) of Rozema et al. [2] is carried out.

The scale similarity model of Bardina et al. [3] is based on an extrapolation from the
smallest resolved scales, achieved by a double spatial filtering, and is able to capture
anisotropic and out-of-equilibrium effects. The application of this model leads to high
correlations between the exact and the computed subgrid-scale stress tensor. For instance,
correlations as high as 0.8 on the tensor level were achieved for both homogeneous isotropic
turbulence at a subgrid Reynolds number of ReSGS = 180 and homogeneous turbulence
in the presence of mean shear at ReSGS = 204 (see Bardina et al. [3]). Despite of the
characteristic high local correlations, the Bardina model does not ensure a positive net
rate of energy transfer to the small scales. Hence, this scale similarity model is often
combined with an eddy viscosity model.

The eddy viscosity model that is applied in conjunction with the Bardina model [3]
in the current work, i.e., the anisotropic minimum-dissipation model [2], is based on a
decoupling of the small scales from the large ones. In order to achieve this scale separation,
an eddy dissipation is introduced through the application of a Poincaré inequality. This
eddy dissipation counterbalances the production of small eddies, removing the energy of
the subgrid scales of the solution [2]. The described procedure ensures that the unresolved
scales do not influence the solution (see Verstappen [11]) and consequently allows the
formulation of a closure model based only on the resolved eddies.

Although the eddy dissipation introduced by the anisotropic minimum-dissipation mo-
del has a similar effect as the subgrid-scale stress tensor, the model does not necessarily
have the same structure as the subgrid stresses. For instance, considering other eddy visco-
sity models such as the Smagorinsky model, correlations between the exact and the com-
puted subgrid-scale stress tensor as low as 0.26 and 0.03 were achieved. The former is
related to homogeneous isotropic turbulence at low Taylor micro-scale Reynolds numbers
(Reλ < 40) (see Clark et al. [5]), while the latter is related to homogeneous turbulence in
the presence of mean shear at a subgrid-scale Reynolds number of ReSGS = 204 (see Bardi-
na et al. [3]). Moreover, the anisotropic minimum-dissipation model cannot account for the
effect of backscatter other than through the introduction of a negative eddy viscosity. Ho-
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wever, that may lead to numerical instabilities in simulations (see Bensow and Fureby [8]).
Based on the properties of the scale similarity model of Bardina et al. [3] and the

anisotropic minimum-dissipation model of Rozema et al. [2], it is clear that they are
of complimentary nature. Therefore, a mathematically consistent combination of both
models is promising. The main goal of this work is to obtain in a natural way the
minimum-dissipation-Bardina model.

The current paper is organized as follows: Section 2 provides a thorough description
of the applied mathematical methodology in the context of the convection-diffusion equa-
tion. Afterwards, in Section 3, this mathematical methodology is extended to the Navier-
Stokes equations. This results in the incompressible spatially filtered Navier-Stokes equa-
tions that includes both the anisotropic minimum-dissipation model [2] and the Bardina
model [3]. Hence, a mathematically consistent mixed model, i.e., the minimum-dissipation-
Bardina model, is obtained for large-eddy simulations. Finally, in Section 4, the current
work is summarized.

2 MIXED MODELING: MATHEMATICAL METHODOLOGY

In the current work, a mathematical methodology to obtain a natural combination of
the scale similarity model of Bardina et al. [3] and the anisotropic minimum-dissipation
model of Rozema et al. [2] is proposed. To demonstrate this methodology, a two-dimensio-
nal convection-diffusion equation is analyzed in this section. Section 3 is devoted to
the extension of the proposed methodology to the full three-dimensional Navier-Stokes
equations.

The convection-diffusion equation describes the transport phenomena due to convection
and diffusion processes:

∂fi
∂t

+
∂fi uj
∂xj

= D
∂2 fi
∂xj ∂xj

. (1)

The first and second terms on the left-hand side come from the material derivative of the
variable fi and represent the time variation and the convective transport, respectively.
The term on the right-hand side represents the diffusion. The density of any physical
variable is represented by fi. Although the density fi is currently represented as a vector,
it can also be a scalar. The velocity field with which the physical variable is convected and
the diffusion coefficient are represented by uj and D, respectively. Einstein’s summation
convention is implied for repeated indices.

The convection-diffusion equation (Eq. (1)) is spatially filtered with the help of the
Schumann [1] filter, which is defined by

V

f i =
1

|V |

∫
V

fi dV , (2)

where V denotes the volume of the filter box. The obtained volume-averaged convective
and diffusive terms are rewritten by applying Gauss’ divergence theorem. This procedure
leads to the appearance of surface-averaged terms, which are defined by

S

f i =
1

|S|

∫
S

fi dS , (3)
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where S denotes a surface (e.g. the surface of V ). Thus, the volume-averaged convection-
diffusion equation becomes

|V |
|S|

∂
V

f i
∂t

+
S

fi uj =

S

D
∂ fi
∂xj

. (4)

This equation is, however, not closed due to the nonlinearity of the convective term, i.e.,
the second term on the left-hand side of Eq. (4). Therefore, this term is decomposed
according to

S

fi uj =
V

f i
S

uj + ταij , (5)

where ταij represents the subgrid-scale stress tensor. In this work, this tensor is determined
according to an eddy viscosity approach:

ταij ≈ −
S

De
∂fi
∂xj

. (6)

Thus, the nett effect of the subgrid stress in the filtered convection-diffusion equation is
an increase of the diffusion coefficient; The total diffusion coefficient becomes D + De,
where De is the diffusion coefficient related to the turbulence.

The left-hand side of Eq. (5) contains a surface integral, whereas the right-hand side
contains a volume integral. To approximate both, shifted volumes are to be introduced.
These volumes have the same size and form as the original volumes but are shifted so that
they are centered around a surface. Figure 1 illustrates a volume shifted in the j-direction
with regard to a two-dimensional cell.

Vj

Vj+1

Vj+1
2

Sj+1
2

Figure 1: Shifted volume in relation to the j -direction. Sj+1/2 denotes the surface that is included in
the volume Vj+1/2.

Obviously the fluxes through all cell surfaces must be determined. Here, the focus is
solely on the computation of the convective term at the surface Sj+1/2 for the sake of
brevity. This surface is the intersection of the Vj and Vj+1 volumes, i.e., Vj ∩ Vj+1 (see
Fig. 1).

Firstly, the
V

f i term in Eq. (5) is to be evaluated at the surface Sj+1/2. For that, the
volume average regarding the shifted volume is considered (see Fig. 1). It is approximated
according to
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Vj+1/2

f i =
Vj ∪Vj+1

f i + ri|
Sj+1/2

, (7)

where
Vj ∪Vj+1

f i represents the volume average of fi over the volume consisting of the union
of the Vj and Vj+1 cells, i.e., Vj ∪ Vj+1, and ri describes the residual at the considered
surface.

The first term on the right-hand side of Eq. (7) is computed by interpolating the known
volume averages of the physical variable fi:

Vj ∪Vj+1

f i =
1

2

(
Vj

f i +
Vj+1

f i

)
. (8)

Equation (8) shows that the interpolation of
Vj

f i and
Vj+1

f i can be seen as a filter over

the volume Vj ∪ Vj+1 (see Fig. 1). Hence,
Vj ∪Vj+1

f i is considered a double-filtered variable.
The first filter level is, then, characterized by the same filter width as the Schumann filter,
i.e., Vj or Vj+1. The second filter level is characterized by a double filter width in regard to
the Schumann filter, i.e., a volume filter over Vj ∪ Vj+1. The mathematical methodology,

then, naturally introduces a relation between a single-filtered variable, i.e.,
Vj+1/2

f i, and a

double-filtered variable, i.e.,
Vj ∪Vj+1

f i. Therefore, a scale similarity model is the natural
choice to approximate the residual ri. This type of model is based on the scale similarity
hypothesis, which states that the effect of the unresolved scales on the resolved ones can
be approximated through the similarity of the smallest resolved scales and the biggest
unresolved scales. This leads to

f ′i ≈ f ′i = f i − f̃ i , (9)

where f ′i is defined by fi = fi + f ′i . The first and second filter levels are characterized

respectively by the filter widths ∆ and ∆̃, where ∆̃ > ∆. It may be remarked that Eq. (9)
applies to a volume filter, as well as to a surface filter. Thus, the residual ri in Eq. (7)
can be defined as

ri|
Sj+1/2

=
Vj+1/2

f ′i . (10)

Secondly, the velocity component of the convective term (see Eq. (5)), i.e.,
S
uj, is

defined at the surface Sj+1/2. For staggered grids
Sj+1/2

uj must be approximated by
interpolation:

Sj+1/2
uj =

Si ∪Si+1
uj + qj|

Sj+1/2

, (11)

where
Si ∪Si+1

uj represents the surface average of uj over the surface consisting of the
union of the Si and Si+1 surfaces (see Fig. 2). The residual of of this approximation
(qj) is to be defined at the Sj+1/2 surface. For the sake of simplicity, double indices are
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Vj

Vj+1

Si Si+1Si+1
2

u2 i+1

u1 j

u1 j+1

u2 i

Figure 2: Staggered grid: Surfaces and velocities.

abolished and only the essential index is shown. For instance, the j-index is abolished for
the variables located at j + 1/2. Thus the interpolation of

Si ∪Si+1
u2 can be written as:

Si ∪Si+1
u2 =

1

2

(
Siu2 +

Si+1
u2

)
. (12)

As for the volume averages of fi, the applied interpolation is interpreted as a filtering
process characterized by a filter width of Si ∪ Si+1. Hence, Si ∪Si+1u2 is also considered
a double-filtered variable, where the first and second filter levels are characterized by
filter widths of Si or Si+1 and Si ∪ Si+1, respectively. Again, a natural relation between

a single-filtered variable, i.e.,
Sj+1/2

u2, and a double-filtered variable, i.e.,
Si ∪Si+1

u2, is
achieved. Therefore, a scale similarity model (see Eq. 9) is also a natural choice to model
the residual qj. The model is, then, defined according to

qj|
Sj+1/2

=
Sj+1/2

u′j . (13)

Equations (7) and (11) are, then, introduced in Eq. (5) to approximate the convective
flux trough the surface Sj+1/2:

Sj+1/2

fi uj =
Vj ∪Vj+1

f i
Si ∪Si+1

uj + ταij|Sj+1/2

+ τβij|Sj+1/2

, (14)

with

τβij|Sj+1/2

=
Vj ∪Vj+1

f i qj|
Sj+1/2

+
Si ∪Si+1

uj ri|
Sj+1/2

+ (ri qj) |
Sj+1/2

. (15)

The scale similarity approximations for the residuals ri and qj at the surface Sj+1/2

(see Eqs. (10) and (13)) are introduced in Eq. (15). This results in:

τβij|Sj+1/2

=
Vj+1/2

f i
Sj+1/2

uj −
Vj ∪Vj+1

f i
Si ∪Si+1

uj . (16)

Here, we only considered the surface Sj+1/2. The convective term is treated in a
similar fashion for all surfaces. Once again, non-relevant indices are supressed as much

as possible. Moreover, the double-filtered variables such as
Vj ∪Vj+1

f i and
Si ∪Si+1

uj are

simply denoted by
V

f̃ i and
S
ũj, respectively. And the single-filtered variables such as
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Vj+1/2

f i and
Sj+1/2

uj will be denoted by
V

fi and
S
uj, respectively. Hence, the resulting

spatial-filtered convection-diffusion equation is

∂
V

f i
∂t

+ δj

(
V

f̃ i
S

ũj

)
= δj

( S

D
∂ fi
∂xj

)
− δj

(
ταij + τβij

)
, (17)

where

τβij =
V

f i
S

uj −
V

f̃ i
S

ũj , (18)

and δj is the usual finite difference operator, as defined by Williams [12]. It is given by:

δj (fi) =
1

∆xj

(
fi i,j+1/2,k − fi i,j−1/2,k

)
. (19)

In conclusion, the filtered convection-diffusion equation is obtained through the ap-
plication of the Schumann box filter [1]. While approximating the nonlinear convective
term, relations between singly and doubly filtered variables arise. The scale similarity
hypothesis can, then, be naturally applied. Hence, a modeled term that depends on both
an eddy viscosity model (for ταij) and a scale similarity model (for τβij) is achieved.

3 MIXED MODELING: EXTENSION TO THE INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS

The mathematical methodology described in Section 2 is extended to the incompress-
ible Navier-Stokes equations. Firstly, in Section 3.1, the averaged conservation of mass is
obtained. Secondly, in Section 3.2, the equations for the conservation of filtered momen-
tum are obtained. Finally, the subgrid-scale stress tensor is analyzed and the implemented
models are defined.

3.1 Conservation of mass

The incompressibility condition ∂/∂xi(ui) = 0 is integrated over one grid cell V . Ap-
plying Gauss’ theorem yields:

δj
S

uj = 0 . (20)

3.2 Conservation of momentum

The convection-diffusion equation (17) does not contain a pressure term. However, the
contribution of the pressure can simply be added to this equation as a sink term. The
averaged pressure term is given by

V

∂

∂xi
p δij =

|S|
|V |

S

p δij = δi

(
S

p δij

)
, (21)

where p and δij are the kinematic pressure and the Kronecker delta, respectively. Here, the
volume-averaged pressure term is rewritten using Gauss’ divergence theorem. As before,
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Einstein’s summation convention is used and the finite difference operator denoted by δi
is applied to represent the fluxes through all surfaces.

The pressure term is added to the convection-diffusion equation (Eq. (17)) as a sink
term. The physical variable fi is substituted by the velocity field ui. Moreover, the
diffusion coefficients D and De are substituted by the kinematic viscosities ν and νe,
respectively. The former is the fluid kinematic viscosity, while the latter is the kinematic
viscosity related to the turbulence, i.e., the eddy viscosity. Consequently, the filtered
conservation of momentum for incompressible fluids is obtained:

∂
V
ui
∂t

+ δj

(
V

ũi
S

ũj

)
= −δi

(
S

p δij

)
+ δj

(
ν
∂

S
ui

∂xj

)
− δj

(
ταij + τβij

)
. (22)

The subgrid-scale stress tensor (τSGSij ), which models the effect of the unresolved scales

on the resolved ones, is, then, represented by a combination of the ταij and τβij stress tensors,
i.e., by a mixed model:

τSGSij = ταij + τβij . (23)

Firstly, the stress tensors ταij is described (see also Eq. (6)):

ταij ≈ −νe

(
∂

S
ui

∂xj
+
∂

S
uj

∂xi

)
. (24)

In the current work, the eddy viscosity νe is approximated according to the anisotropic
minimum-dissipation model (AMD) proposed by Rozema et al. [2]:

νe = C
max{−

(
S

∆k ∂
S
ui/∂xk

)(
S

∆k ∂
S
uj/∂xk

)
Sij, 0}(

∂
S
um/∂xl

)(
∂

S
um/∂xl

) , (25)

where Sij is the rate-of-strain tensor

Sij =
1

2

(
∂

∂xj

S

ui +
∂

∂xi

S

uj

)
, (26)

and
S

∆k is the filter width in the k-direction of the surface filter. The constant is set to
C = 0.3 for a central second-order accurate spatial discretization method (see Rozema
et al. [2]). The AMD model is successfully tested, for instance, on turbulent channel
flows discretized on anisotropic grids (see Rozema et al. [2] and Rozema [13]). As far as
the authors are aware, the AMD model has never been tested in combination with other
models.

Secondly, the stress tensor τβij is described (see also Eq. (18)):

τβij =
V

ui
S

uj −
V

ũi
S

ũj . (27)

The tensor τβij can be interpreted as a scale similarity model proposed by Bardina et al. [3]
for a double decomposition of the stress tensor, where a volume and a surface average are
employed (note that the Bardina model contains only volume averages: ui uj − ũi ũj).
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The application of a double decomposition of the stress tensor is supported by the work
of Moin and Kim [14]. They state that, for second-order accurate spatial discretization
schemes, an explicit calculation of the Leonard term is not justifiable since this term
and the truncation error of the spatial discretization scheme are of the same order of
magnitude.

In conclusion, the minimum-dissipation-Bardina mixed model is achieved in a math-
ematically consistent way for second-order accurate spatial discretization schemes. This
model specifically combines the properties of a functional and a structural model due to
their complimentary nature. Moreover, the achieved mixed model is in agreement with
the ad hoc mixing approach applied by Bardina et al. [3], which sums the contributions
of the Bardina model with an eddy viscosity model, such as the Smagorinsky model.

4 CONCLUSIONS

The volume-balance procedure proposed by Schumann [1] for the Navier-Stokes equa-
tions is thoroughly studied in order to achieve a mathematically consistent way of mixing
the functional minimum-dissipation model [2] and the structural scale similarity model of
Bardina et al. [3].

Firstly, the convection-diffusion equation is filtered according to the Schumann box
filter [1]. The Gauss’ divergence theorem is then applied and the surface average of the
nonlinear convective term is decomposed into a computable convective term plus a resid-
ual. The latter is approximated by the subgrid-scale stress tensor according to the eddy
viscosity approach.

Secondly, the computation of the convective term requires an interpolation. This inter-
polation can be viewed as a filter; hence it leads to double-filtered variables. Therefore, the
scale similarity hypothesis is applied. Thus, a mixed approach between an eddy viscosity
model and a scale similarity model is achieved.

In this paper, the procedure is first described for a convection-diffusion equation.
Thereafter, it is extended to the Navier-Stokes equations. The resulting subgrid-scale
stress tensor is modeled by a mixture of the anisotropic minimum-dissipation model of
Rozema et al. [2] and the scale similarity model of Bardina et al. [3]. In this way, a
mathematically consistent mixed model is achieved.
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