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Abstract. In gradient–based optimization methods, such as in adjoint–based methods,
after having computed the sensitivities, the necessary shape changes should be applied.
The sensitivity vector is often affected by numerical noise, due to the limited resolution of
the discretization schemes, thus it cannot be used directly to change the shape, because the
resulting shape might contain noisy surfaces which may be infeasible to be manufactured.
In this work, a CAD–free parameterization tool is proposed, based on [1], which aims to
enforce smoothness to the resulting shape. A subset of the nodes belonging to the surface
are selected as handles/parameters and are responsible for controlling the surface changes.
The displacement field of the surface nodes attempt to match the target displacement field
of the handles, whilst ensuring that, smoothness requirements are enforced. After having
changed the boundaries, the volume mesh should also be adapted to the updated geometry
so as to proceed with the optimization. One way to achieve this is by re–meshing, but
this process is time–consuming and difficult to automate. An efficient alternative is to
adapt the existing mesh to the updated boundaries by using a mesh morpher. Herein,
the Finite Transformation Rigid Motion Mesh Morpher [2] is used to adapt the mesh
to the necessary shape changes. The efficiency of the proposed parameterization tool is
demonstrated as a standalone tool and as constituent of a discrete adjoint solver.
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1 INTRODUCTION

During the last years, a significant improvement has been achieved in the field of the
CFD–based aerodynamic shape optimization. Engineers are interested in obtaining the
optimal configuration of a shape over all possible transformations with respect to (w.r.t.)
some measure of the cost, also known as (a.k.a.) objective function. The main constituents
needed for performing a fully automated shape optimization loop include the flow solver,
a shape parameterization method, an optimization technique and a way to adapt the
computational mesh to the updated boundaries. Typical examples of shape optimization
might involve the design of ducts or manifolds for minimum power or pressure losses, cars
with optimal combination of drag and lift, aircraft for maximum lift etc.

Optimization methods can be distinguished into two main categories, i.e. stochastic (or
gradient–free) and gradient–based techniques. Stochastic optimization methods, like evo-
lutionary algorithms, are very efficient when the number of design variables is reasonably
small, since the curse of dimensionality limits the optimization process. This makes them
impractical in large–scale problems. On the other hand, the gradient–based optimization
methods, with the adjoint method [3, 4] being the most well–known representative for
computing the gradient w.r.t. the design variables, require more effort to develop and
maintain, but the biggest advantage of such methods is that the cost per optimization
cycle is independent from the number of design variables. The adjoint method can fur-
ther be separated into two sub–categories; the discrete [5] and the continuous [6] adjoint
method. Each of them has their share of challenges. In this work, an in–house discrete
adjoint solver has been used to compute the gradient of the cost function w.r.t. the de-
sign variables and an in–house steady–state flow solver [7]. The latter is used to solve the
Navier–Stokes equations for incompressible flows and it is based on a mixed hybrid finite
volume scheme (MHFV).

One important decision to be taken in the optimization process, is the selection of
the design space, or in other words, the design variables. Since in CAD–free, in contrast
to CAD–based parameterization techniques, there is no analytical expression that can
describe the shape to be studied, a way to control the shape should be available. A very
well–known way to do that is with the use of the so–called free–form deformation (FFD).
In the latter, the shape to be optimized is enclosed by a cloud of points (a.k.a. lattice)
which constitute the design variables. A basis function (such as radial basis functions [8],
harmonic coordinates [9], volumetric B–splines [10] or NURBS etc.) is used to interpolate
the movement of each node of the point cloud to the nodes of the surface mesh of the
shape to be optimized. Such methods require user intervention and experience to form
an appropriate point of cloud that surrounds the shape. Moreover, a different selection
of point clouds might lead to different optimum solution, which means that the optimum
geometry is affected by the user input.

A way to alleviate such problems in CAD–free optimization, with which this paper is
dealing with, is to consider as design variables all the nodes of the surface mesh of the
shape to be optimized. Such decision leads to the richest possible design space but it has
some challenges. In the adjoint method, in which the goal is to compute the gradient
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(a.k.a. sensitivity vector) w.r.t. the design variables, it is very often to contain numerical
noise. Mainly, this occurs due to the limited resolution in the discretization schemes and
thus, cannot be used directly to change/deform the boundaries. Moreover, since each
node is free to move independently from its neighbours, oscillations are generated in the
surface which might be unacceptable during the manufacturing process. For instance, a
noisy blade surface might lead to numerical problems in subsequent optimization loops.

The aim of this work is to eliminate the aforementioned problems by developing the
Soft Handle Triggering tool (SHT), a CAD–free parameterization tool, which will be
responsible for enforcing smoothness to the resulting shape. A subset of the nodes of
the surface mesh are selected as parameters (in our context we call them handles) and
they are controlling the shape changes. In addition, after having changed the boundaries,
a way to propagate this movement to the computational mesh is required. An efficient
way to do so, is by using a mesh morphing tool. In this work, the Finite Transformation
Rigid Motion Mesh Morpher (FT–R3M) [2] is used which has been proven capable of
undergoing extreme deformations, whilst ensuring a good resulting grid quality. The
parameterization tool, proposed in this work, is not capable of working independently
and a mesh morpher that relies on the minimization of a functional is needed to support
it. FTR3M is a functional–minimization–based mesh morpher, in which the target is to
minimize an energy functional related to the deformation energy between the initial and
the final geometry. Therefore, the smoothing of the boundaries takes place at the same
time with the mesh morphing. More details are written in chapter 3.

2 MESH MORPHING

As mentioned above, the SHT tool needs a mesh morpher that relies on the minimiza-
tion of a functional in order to be able to support it. The SHT tool is responsible for
deforming the boundaries, which aims to enforce smoothness to the resulting shape and,
a mesh morpher undertakes to adapt the computational mesh to the updated boundaries.
The idea of the SHT tool is to augment the morpher’s cost function with a supplementary
penalization energy. Thus, the SHT can work with any morpher that obeys the minimiza-
tion of a functional. In the literature, there are several mesh morphers with this property
that could be used. A brief overview of such mesh morphers follows.

2.1 Linear elasticity

In the linear elasticity method [11], the Hooke’s law with linearized hyper–elasticity at
small strains is used, in order to handle the rotation and the mesh anisotropy. In this ap-
proach, the computational mesh is considered as a deformable body of an elastic material.
The volume mesh is adapted to the shape changes by minimizing the deformation energy
of the whole mesh. This energy to be minimized is given from the following expression

EM =
1

2

∫
Ω

[
λ[Tr(ε)]2 + 2µTr(ε2)

]
d~u (1)

where Ω is the domain in which the equations are defined, λ and µ are the and Lamé
constants and Tr is the trace of a matrix. Moreover, the strain displacement is computed
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as

ε =
1

2

(
∇uT +∇u

)
(2)

2.2 Laplacian

In this approach, also known as ”Laplacian coordinates” [12, 13], the new/updated
position of the nodes that belong to the interior mesh of the computational domain are
given by minimizing the following energy

EM =
1

2

∫
Ω

||∇~u||2d~u (3)

with Ω being the domain of integration. This is an efficient mesh morphing technique
when the transformation of the body does not involve big rotations.

2.3 Finite transformation rigid motion mesh morpher

The FT–R3M [2] is an in–house mesh morphing tool of ESI group, developed by the
same authors. FT–R3M is a mesh-less method and tool which gracefully propagates the
movement of the boundaries (surface changes) to the internal nodes of the volume mesh,
ensuring an as-rigid-as-possible motion. It does not require any inertial quantities or cell
connectivities related to the mesh. Nodes are grouped into ”stencils” which are required
to deform in an as-rigid-as-possible way. The idea is to minimize an energy functional
between the initial and the final state of the shape to be deformed which is given by the
following equation

EM =
∑
s∈S

ws

∑
(i,j)∈s

µs,ij

∣∣∣∣Rs( ~Xj − ~Xi)− (~xj − ~xi)
∣∣∣∣2

s.t. RsR
T
s = In, ∀s ∈ S

(4)

where, S is the set of the stencils (point clouds), ~Xj and ~xj are the position vectors of
node j in the initial and the final state respectively and Rs is the rotation matrix of stencil
s. Furthermore, ws is a scalar weight per stencil that stresses the importance of some
stencils as higher than some others’ and µs,ij a weight per edge that accounts for mesh
anisotropy. It has been proved in [2] that, FT–R3M is very robust and can handle mesh
anisotropies and rotations very efficiently.

In this paper, FT–R3M has been used as a mesh morphing tool in which the SHT
has been developed on top, in order to take advantage of its nice properties during mesh
deformation. In section 3, more details are described of the contribution of SHT to FT–
R3M.

3 SOFT HANDLE TRIGGERING CONTRIBUTION

The concept of the SHT tool is to augment the morpher’s energy with a supplementary
penalization energy. Let us denote by EM the nominal energy of the mesh morpher (i.e.
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FT–R3M) and by ES the additional penalization energy. The final, augmented energy
(Eaug = EM + ES), which is then required to be minimized is

Eaug =
∑
s∈S

ws

∑
(i,j)∈s

µs,ij

∣∣∣∣Rs( ~Xj − ~Xi)− (~xj − ~xi)
∣∣∣∣2 +

∑
k∈H

αλk
∣∣∣∣(~xk − ~pk)

∣∣∣∣2
s.t. RsR

T
s = In, ∀s ∈ S

(5)

where H is the set of handles/parameters, ~pk the target displacement of the handle node
k and α is a scalar. For the time being, let us assume that the target displacements of the
handles are given. Later on, it will be explained how this quantity is computed within
the adjoint–based optimization loop.

The first step is to select the handles/parameters. The handles are a set of repli-
cated surface nodes. Each handle has a specific target displacement, ~pk and a weight
coefficient, λk which normalizes the penalization energy w.r.t. the nominal energy of
the morpher. The λk coefficient is a product of a weight ws and the weight µs,ij. The
scalar α is a positive scalar which favours the penalization energy w.r.t. the morpher’s
energy in order to enforce stronger smoothness conditions. It is worth mentioning that
the target displacement is not necessarily identical with the actual displacement, ~xi of the
underlying node. The actual displacement of a surface node is a compromise in between
the target displacement of the corresponding handle and the smoothness requirements.
Thus, the shape changes are driven from the target displacement of the handles and the
computational mesh adaptation is done by the mesh morpher at the same time.

To solve such a system, the Newton’s method [14] is used. If we denote by ~b the set of
degrees of freedom, namely the nodal displacements ~xi and the rotation matrices of each
stencil Rs, then the system to be solved is the following

Hδ~b = −∂Eaug

∂~b
, H = ∇2Eaug =

∂2Eaug

∂~b2
(6)

where H is the Hessian matrix of the augmented cost function Eaug.

4 GRADIENT COMPUTATION W.R.T. THE HANDLES

Since a discrete adjoint solver is used, the gradient of the objective function (J) is

computed w.r.t. the nodal coordinates ( ~X), namely dJ/d ~X. In order to keep a consistency
within the optimization loop, the gradient w.r.t. parameters/handles must be computed
(dJ/d~p ). To do so, let us denote by G the intrinsic relation between the node coordinates
and the parameters/handles. This is written as

G = G( ~X, ~p ) = 0 (7)

For the purpose of computing the gradient with respect to the parameters, a geometric
adjoint system with Eq. (7) as master/slave equation, is solved. By differentiating the
latter, we have [

∂G

∂~p

]T
+

[
d ~X

d~p

]T[
∂G

∂ ~X

]T
= 0 (8)
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Then, differentiating the objective function w.r.t. the parameters/handles yields[
dJ

d~p

]T
=

[
∂J

∂~p

]T
+

[
d ~X

d~p

]T[
∂J

∂ ~X

]T
(9)

Furthermore, since there is no explicit expression that relates the objective function with

the parameters it yields that
[
∂J/∂~p

]T
= 0. Now, introducing Φ, a Lagrangian operator,

we can multiply it with Eq. (8) and add it to Eq. (9) we obtain[
dJ

d~p

]T
=

[
d ~X

d~p

]T[
∂J

∂ ~X

]T
+

{[
∂G

∂~p

]T
+

[
d ~X

d~p

]T[
∂G

∂ ~X

]T}
Φ (10)

By reformulating the augmented gradient with respect to the parameters, Eq. (10), we
finally have [

dJ

d~p

]T
=

[
d ~X

d~p

]T{[
∂J

∂ ~X

]T
+

[
∂G

∂ ~X

]T
Φ

}
+

[
∂G

∂~p

]T
Φ (11)

The derivative of the node coordinates with respect to the parameters, namely the term[
d ~X/d~p

]T
, is the so-called “grid sensitivities”. The grid sensitivities express the depen-

dency of the each node coordinate with respect to a change in each parameters. The
computational cost of this derivative is proportional to the number of parameters and
since it is not desirable to compute this term, the expression that is multiplied with,
is demanded to be equal to zero. As a consequence the adjoint equation is introduced,
namely [

∂G

∂ ~X

]T
X∗ = −

[
∂J

∂ ~X

]T
(12)

where the Lagrangian operator Φ is replaced by the adjoint node coordinate vector, X∗.
By solving the adjoint equation in Eq. (12), the adjoint node coordinate vector X∗ is
obtained and finally the gradient with respect to the parameters is computed as[

dJ

d~p

]T
=

[
∂G

∂~p

]T
X∗ (13)

From Eq. (13), it is shown that the gradient is independent of the number of handles,
which make its computation very efficient. Then, after having computed the gradient
w.r.t. the parameters, the latter is used from an optimization algorithm in order to
compute the target displacement of each handle node.

5 ALGORITHM OF THE OPTIMIZATION FRAMEWORK

The gradient–based algorithm used for the aerodynamic shape optimization is described
in brief below and its basic constituents are demonstrated in Fig. 1.

0. Generate a mesh and use a selection algorithm to choose a subset of the surface
nodes as parameters/handles.
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1. Solve the flow equations.

2. Solve the adjoint equations and obtain the sensitivity vector dJ/d ~X.

3. Solve the adjoint system of the morpher, Eq. (12) and obtain ~X?.

4. Compute the gradient w.r.t. the parameters/handles, Eq. (13).

5. Update the target displacement of the handles by ~p new
i =~p old

i ± η dJ/d~pi, where η is
a user–defined step.

6. Use FT–R3M and SHT to update the shape and the computational mesh.

7. Unless the stopping criterion is satisfied, go to step 1.

Figure 1: Basic constituents of the adjoint–based optimization workflow.

6 APPLICATIONS

In this section, the SHT tool with the FT–R3M are tested and demonstrated as stan-
dalone tools and as part of a discrete adjoint–based optimization loop.

6.1 Blade tip gap - Smoothing test case

The first case is dealing with the deformation of a 2D blade. In Fig. 2 the initial mesh
and shape of the tip gap in the blade is shown. The mesh consists of approximately 33K
nodes and 50K elements. The blade is being deformed and artificial numerical noise is
applied on its movement, whilst the nodes marked in red in Fig. 2 are kept fixed. The
purpose of this case is to validate the efficiency of the SHT as a standalone tool. In the
study that follows, different values of the scalar α (see also section 3) are applied, to show
the dependency of the resulting shape on this quantity (Fig. 3). All nodes that are free
to move are considered as handles.

In Fig. 3, the efficiency of the SHT tool is demonstrated. The artificial noise that
has been added to the deformation of the blade makes it unacceptable for manufacturing.
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Figure 2: Blade tip gap case: Initial mesh and shape of the blade. Nodes marked in red are kept fixed,
whereas the rest of the boundary nodes are being deformed.

(a) No use of the SHT tool (b) α = 1

(c) α = 0.1 (d) α = 0.01

Figure 3: Blade tip gap case: In this figure the resulting mesh is presented without and with the use of
the SHT tool and for different values of the scalar balancing coefficient α.

After applying the SHT tool, the surfaces are smoothed and the shape obtains a manufac-
turable shape. This balancing coefficient α makes a compromise between the deformation
energy of the FT–R3M and the supplementary penalization energy. The more noisy the
displacement, the smaller this balancing coefficient should be. Of course, there are some
limitations in the latter, because the smaller its value it is, the more ill–conditioned the
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system to be solved becomes.

6.2 Adjoint–based optimization of an S–bend duct

This application is dealing with the S–bend duct, an air duct test case provided by
VolksWagen AG. The optimization aims at minimizing J , where J stands for the total
pressure losses across the duct. The latter is computed at the inlet/outlet, from the
expression

J =

∫ (
p+ 1

2
ρ~u
)
~u · ~ndS∫

~u · ~ndS
(14)

where ~u is the velocity vector, p is the static pressure, ρ is the density of the fluid and ~n
is the unit outward normal vector at the boundaries of the flow domain.

The baseline mesh consists of 480K nodes and 466K hexahedra. The flow is laminar
with inlet velocity u=0.1m/s (normal to the inlet boundary) and with Reynolds number
approximately of Re=400, based on the hydraulic diameter of the inlet. In Fig. 4, the
initial shape of the duct is presented. The blue part of the geometry remains fixed,
whereas the central curved part (red region) is free to deform.

Figure 4: S–bend duct optimization: Initial shape of the duct. Regions marked in blue are not allowed
to change, whereas the central curved part marked in red is free to deform.

After performing 30 optimization cycles, the total pressure losses are reduced approx-
imately by 23.7% w.r.t. the initial. The new shape of the duct is shown in Fig. 5 in
comparison to the initial one. The resulting/optimized shape is smooth and manufac-
turable and there is no ”step” in the vicinity of the unconstrained and the constrained
patches. In addition, in Fig. 6 the streamlines in the initial and the optimized shape are
demonstrated and in Fig. 8 the convergence history of the optimization is plotted. It is
noticed that the stagnation/recirculation area near the outlet of the duct has been limited
in the optimized shape which is the main reason of the reduction of the pressure losses.
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(a) Initial shape. (b) Optimized shape.

Figure 5: S–bend duct optimization: Close–up view in the central curved of the duct. In this figure
the initial (fig. 5(a)) and the optimized (fig. 5(b)) shapes are compared. The volume of the optimized
geometry has been increased during the optimization, leading to approximately 23.7% less total pressure
losses.

Figure 6: S–bend duct optimization: Streamlines in the initial (upper) and the optimized (bottom)
shape of the duct. The intense flow recirculation area near the bottom side of the wall has been reduced
in the optimized shape, which is the reason of the reduction in the total pressure losses across the duct.
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Figure 7: S–bend duct optimization: Optimal shape of the duct coloured based on the cumulative
displacement on the upper side (left fig.) and the bottom side (right fig.). Flow from left to right.
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Figure 8: S–bend duct optimization: Convergence history of the optimization.

7 CONCLUSION

In this work, the SHT tool has been developed and presented together with FT–
R3M, an in–house mesh morphing tool. A fully–automated CAD–free, adjoint–based
shape optimization framework has been implemented which does not require any manual
intervention. Since both FT–R3M and SHT are differentiated, the gradient consistency
is maintained. The cases shown in this paper demonstrate the efficiency of both tools.
Smoothness requirements on the surface are enforced and, their movement is gracefully
propagated to the interior mesh.
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