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Abstract. Uncertainties associated with either the operating conditions and/or man-
ufacturing imperfections frequently affect the results of design/optimization methods in
various engineering fields. This paper deals with optimization under uncertainties related
to the flow conditions and is based on the non-intrusive Polynomial Chaos Expansion
(PCE). In previous work by the same group of authors, the non–intrusive PCE was
combined with evolutionary algorithms [1, 2]; in contrast, in this work, the optimiza-
tion is performed by a gradient–based algorithm. The role of PCE is to compute the
first and second statistical moments of the quantity of interest. Working, though, with
a gradient–based method, the gradient of these statistical moments with respect to the
design variables must be computed too and this is made possibly by implementing the
continuous adjoint technique. This paper presents optimizations under uncertainties of a)
a heat transfer system, namely a lid–driven cavity with one blowing and one suction jet
for the maximization of the heat extracted through the upper moving wall by computing
the optimal locations of the jets, with uncertainties related to their operating conditions
and b) a car model aiming at minimum drag, in which the design variables are the con-
trol points of a volumetric B–Splines lattice and the uncertain variable is the freestream
velocity.
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1 INTRODUCTION

During the last years, research is focused on the development of tools for the analysis
and design–optimization in various engineering fields. Most of these tools solve problems
with fixed operating conditions. However, this is not the case in real–world applications
where the flow conditions may vary and/or the manufactured shape may deviate from the
CAD model. For instance, the drag force of a car is affected by the unforeseen presence
of side–wind. To take this into consideration, the development of algorithms for analysis
under uncertainties related to flow conditions and/or manufacturing imperfections are
necessary.

The term Uncertainty Quantification (UQ) refers to mathematical ways of quantifying
the effect of the uncertainty on the quantity of interest (QoI, denoted by F ). In the
literature, there are several methods for computing/approximating the mean value and
the standard deviation of a function. Each of them has its pros and cons. A well–known
stochastic technique is the Monte–Carlo (MC) one [3] but, for large–scale problems, this
is prohibitively expensive in terms of CPU. To reduce its cost, the Quasi–MC [4] and
Latin–Hypercube Sampling techniques [5] have alternatively been proposed.

Compared to all MC variants, a much more efficient method to deal with the same
problem is the method of statistical moments [6]. In the latter, the second derivatives of
F w.r.t. the uncertain variables are required in order to compute the first two statistical
moments of F with second order–accuracy, [6, 7].

Another way to model uncertainties in engineering applications is the polynomial chaos
expansion (PCE) [8]. This is based on the use of orthogonal polynomials and can be either
intrusive or non–intrusive, depending on whether the governing equations are altered or
not. The intrusive PCE introduces the uncertainty in the mathematical model, leading
to a new system of PDEs that must be solved numerically. On the other hand, in non–
intrusive PCE, the standard evaluation software, without any intervention, is used to
perform the analysis and compute F at some pre–defined data sets. The latter are the
so–called Gaussian nodes, determined by the Gauss Quadrature (GQ) integration rules.

This paper is dealing with the optimization under flow uncertainties by making use
of the non–intrusive PCE method assisted by the continuous adjoint technique [9, 10].
The latter computes the gradient of the QoI w.r.t. the design variables at the Gaussian
nodes and the non–intrusive PCE method is used to compute the objective function and
its gradient for the robust design problem. The first case studied in this paper is a heat
transfer problem representative of configurations used in cooling machine components.
The target is to find the optimal positions of jets so as to increase the heat transfer in
the presence of uncertainties related to their operating conditions. The second case, this
paper is dealing with, is the shape optimization under uncertainties of a car model aiming
at minimum drag.
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2 GRADIENT–BASED OPTIMIZATION UNDER UNCERTAINTIES

2.1 UQ using Non–Intrusive PCE and Gradient Computation

Let F (~ξ,~b) be the QoI affected by the stochastic variable vector ~ξ for which w(~ξ)
is the probability density function (a normal distribution is, herein, assumed) and the

design variable vector ~b. According to the PCE [11], F can be approximated by a linear

combination of C=(M + q)!/(M !q!) orthogonal normalized Hermite polynomials Hi(~ξ) of
degree i as

F (~ξ,~b) ≈
C∑
i=0

αi(~b)Hi(~ξ) (1)

where αi, i ∈ [0, C] are the unknown PCE coefficients, M stands for the number of stochas-
tic variables and q for the chaos order. The first two statistical moments of F , i.e. its
mean value and variance, can be written as

µF (~b)=

+∞∫
−∞

F (~ξ,~b)w(~ξ)d~ξ = α0(~b), σ2
F (~b)=

+∞∫
−∞

(
F (~ξ,~b)− µF (~b)

)2

w(~ξ)d~ξ=
C∑
i=1

α2
i (
~b) (2)

where

αi(~b)=

+∞∫
−∞

F (~ξ,~b)Hi(~ξ)w(~ξ)d~ξ =
P∑
j=1

tjHi(zj)F (zj,~b ) (3)

The integrations required by eq. (3) can be performed by the GQ formula [12], after
computing F at P=(q+ 1)M Gaussian nodes zj, where tj for the weights indicated by the
Gauss integration rules.

Having computed the statistical moments of F (~ξ), the objective function (F̂ ) to be
maximized/minimized for the problem under uncertainties is defined as

F̂ = µF + κσ2
F (4)

where κ is a user–defined weight.
To perform the optimization with a gradient–based method, the derivatives of the

statistical moments of F̂ w.r.t. the design variables ~b

δF̂

δ~b
=
δµF

δ~b
+ κ

δσ2
F

δ~b
(5)

should be computed. From eq. (1),

δF (~ξ,~b)

δ~b
≈

C∑
i=0

δαi(~b)

δ~b
Hi(~ξ) (6)

and, by differentiating eq. (2),

δµF (~b)

δ~b
=
δα0(~b)

δ~b
,

δσ2
F (~b)

δ~b
=2

C∑
i=1

αi(~b)
δαi(~b)

δ~b
(7)
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where, from eq. (3),

δαi(~b )

δ~b
=

+∞∫
−∞

δF (~ξ,~b)

δ~b
Hi(~ξ)w(~ξ)d~ξ =

P∑
j=1

tjHi(zj)
δF (zj,~b )

δ~b
(8)

According to eq. (8), the required derivatives δαi(~b )/δ~b result as the weighted sum of the
derivatives of F , computed by the adjoint method, at the P points zj within the domain

of integration. Thus, the adjoint method should merely provide δF (~b )/δ~b at the Gaussian
nodes.

2.2 Gradient–based Optimization Under Uncertainties

Starting from an initial value–set ~b , the basic steps of the optimization under uncer-
tainties are described below:

1. Solve the flow and adjoint equations to compute F and its gradient at the Gaus-
sian nodes zj, at the cost of P flow and P adjoint solutions, or approximately 2P
equivalent flow solutions (EFS), in total.

2. Compute the statistical moments of F from eq. (2) and their gradients from eq. (7).

3. Compute F̂ and its gradient w.r.t. ~b using eqs. (4) and (5), respectively.

4. Update ~b by performing a descent step.

5. Unless the stopping criterion is met, go to step 1.

3 HEAT TRANSFERMAXIMIZATION IN A LID–DRIVEN CAVITY FLOW

3.1 Case Description

The first application of this paper is the design under uncertainties of the jet system
of a square cavity, for maximum heat transfer through the lid (moving upper wall), fig.
1. The length of each side is L. In the cavity, fluid of specific properties is enclosed. The
bottom wall is at constant normalized temperature Tth/Tc=1. The moving upper wall
(mw) has a constant temperature Tmw = 0.4285Tc and it is sliding to the right with a
constant normalized velocity vmw=1, making the fluid recirculate inside the cavity. Two
steady jets are placed at two locations along both vertical adiabatic walls for controlling
the heat transfer. The jet on the left wall (Jet 1) provides fluid with a constant velocity
equal to vjet = 0.6vmw, zero angle and temperature Tjet = 0.5714Tc. The same amount of
mass flux entering the cavity is extracted through the jet on the right side (Jet 2). The
aim of this design problem is to find the optimal position of each jet for the aforementioned
objective. The latter is the QoI in this problem, computed along the moving wall as

F =

∫
Smw

∂T

∂xi
nidS (9)
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Figure 1: Geometry of the cavity. Fluid is blowing from orifice labelled ’Jet 1’ normal to the left wall.
The same amount of fluid is extracted from the orifice ’Jet 2’ on the right wall.

where ni is the i–th component of the outward unit normal vector at the boundary.
Two design variables ~b = (b1, b2) ∈ RN =R2, standing for the positions of the jets on

the left and right walls, are considered. The width of each jet is d= 0.05L. The initial
normalized jet positions are (b1/L, b2/L)=(0.3, 0.1), measured from the bottom wall. The
heat transfer inside the cavity is determined from the temperature difference between the
upper and bottom wall. The flow inside the cavity is laminar with Reynolds number equal
to Re=661.8, based on L and vmw.

3.2 Flow Equations

The governing PDEs, including the energy equation for the laminar flow of an incom-
pressible fluid, are

Rp = −∂vj
∂xj

= 0

Rv
i = vj

∂vi
∂xj
− ∂

∂xj

[
ν

(
∂vi
∂xj

+
∂vj
∂xi

)]
+
∂p

∂xi
= 0 (10)

RT = cpvj
∂T

∂xj
− cp

∂

∂xj

(
ν

Pr

∂T

∂xj

)
= 0

where vi are the components of the velocity vector, p is the static pressure, cp the heat
capacity and Pr the Prandtl number.

The existence of jets asks for special boundary conditions for the velocity field on both
sides of the cavity. A combination of two differentiable, logistic functions is utilized to
model the velocity profile of each jet, centered at bn, as follows

φ(y, bn) =
1

1 + e−k[y−(bn−d/2)]

(
1− 1

1 + e−k[y−(bn+d/2)]

)
(11)

where k is a coefficient controlling the shape of the logistic functions. Table 1 summarizes
the boundary conditions for the left (LW) and right (RW) wall (jet and impermeable
wall).
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Wall vi p T

LW v1n1(1−φ) + (v1n1−vjet)φ = 0 ∂p
∂n

(1− φ)+pφ = 0 ∂T
∂n

(1−φ) + (T−Tjet)φ = 0

RW v1n1(1−φ) + (v1n1−vjet)φ = 0 ∂p
∂n

= 0 ∂T
∂n

= 0

Table 1: Boundary conditions along the walls and their jets for the primal problem (v2=0 at both walls).

3.3 Development of the Continuous Adjoint Method

To compute the gradient of the QoI F , the development of the adjoint method starts
from

Faug = F +

∫
Ω

uiR
v
i dΩ +

∫
Ω

qRpdΩ +

∫
Ω

T aRTdΩ (12)

where ui are the components of the adjoint velocity, q the adjoint pressure and T a the
adjoint temperature. Differentiating eq. (12) w.r.t. the design variables, yields

δFaug
δbn

=
δF

δbn
+

∫
Ω

q
∂Rp

∂bn
dΩ +

∫
Ω

ui
∂Rv

i

∂bn
dΩ +

∫
Ω

Ta
∂RT

∂bn
dΩ (13)

After differentiating eqs. (10), expanding and rearranging terms in eq. (13), the com-
putation of the gradient becomes independent of variations in (v, p, T ) by setting their
multipliers to zero. This gives rise to the field adjoint equations

Rq = −∂uj
∂xj

= 0

Ru
i = uj

∂vj
∂xi
− vj

∂ui
∂xj
− ∂

∂xj

[
ν

(
∂ui
∂xj

+
∂uj
∂xi

)]
+
∂q

∂xi
+ cpT

a ∂T

∂xi
= 0 (14)

RTa

= −cpvj
∂T a

∂xj
− cp

∂

∂xj

(
ν

Pr

∂T a

∂xj

)
= 0

After satisfying these equations and their boundary conditions (derived in a similar
way though omitted in the interest of space), the remaining terms in eq. (13) form the
gradient of F which takes the form

δF

δb1

=



∫
SLW

[
− qn1vjet + ν

(
∂u1
∂xj

+
∂uj
∂x1

)
njvjet+(

cpT
avjnj + cp

Pr
ν ∂T

a

∂xj
nj
)

1
φ

(
∂T
∂xj
nj − T + Tjet

)]
∂φ
∂b1
dS , if φ 6= 0

∫
SLW

[
− qn1vjet + ν

(
∂u1
∂xj

+
∂uj
∂x1

)
njvjet−

cp
Pr
νT a 1

1−φ

(
∂T
∂xj
nj − T + Tjet

)]
∂φ
∂b1
dS , if φ = 0

δF

δb2

=

∫
SRW

[
− qn1vjet + ν

(∂u1

∂xj
+
∂uj
∂x1

)
njvjet

] ∂φ
∂b2

dS (15)

In eq. (15), φ = 1 corresponds to the center of the jet whereas φ = 0 is over the imperme-
able wall. Recall that, eq. (15) gives the gradient of the QoI w.r.t. bn; in an optimization
problem without uncertainties, this becomes the gradient of the objective function itself.
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3.4 Optimization Under Uncertainties

In this section, the optimization with and without uncertainties in the aforementioned
lid–driven cavity case is performed. The goal of the optimization under uncertainties is
to maximize F̂ (given by eq. (4), with κ=−6), where the QoI is given by eq. (9), by
finding the optimal positions of the jets. The velocity magnitude and temperature of Jet
1 and the temperature of the bottom wall are considered as uncertain variables. It is
assumed that all uncertain variables follow normal distributions with known mean values
and standard deviations as in Table 2. Initially, before proceeding with the optimization,
a UQ study is performed for different chaos orders. Results are summarized in Table 3,
showing that q=2 is a good compromise in terms of computational cost and accuracy.
With q=2, for each optimization cycle 27 flow and 27 adjoint runs are required.

Uncertain Variable mean value standard deviation
vjet/vmw 0.6 0.07
Tjet/Tc 0.5714 0.003
Tth/Tc 1 0.002

Table 2: The heat transfer cavity problem: Mean values and standard deviations of the three uncertain
variables. All of them follow normal distributions.

Chaos Order µF/Fref σF/Fref #Flow Runs
2 1 0.01656 27
3 1 0.01660 64
4 1 0.01663 125

Table 3: The heat transfer cavity problem: Mean value and standard deviation of the heat flux for
the initial position of the jets. Computations performed using the non–intrusive PCE method. Tabu-
lated values are normalized using the reference value of Fref =2.6622. The last column stands for the
computational cost per UQ.

Once the UQ studies have been completed, the next step is to proceed to the adjoint–
based optimization with and without uncertainties. The optimization under uncertainties
is carried out for chaos orders q=2 and q=3. The convergence histories of these runs
are shown in fig. 2. The increase in the QoI, in the design without uncertainties is about
54.5% and is achieved in less than 10 cycles. An increase in F̂ of approximately 51%,
in 6 optimization cycles, is achieved in the presence of uncertainties. In Table 4, the
initial and the optimal sets of design variables (positions of jets) for each optimization
run (with and without uncertainties) are tabulated. Finally, the temperature distribution
of the optimal set of design variables, generated from the optimization with and without
uncertainties, is presented in fig. 3. The fluid blowing from the Jet 1, if located at the
computed optimal position, increases the mean temperature inside the cavity from 438K
to 482K. This explains the increase in F̂ , since the temperature difference between the
fluid and the moving lid is higher, increasing thus the heat transfer.
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Figure 2: The heat transfer cavity problem: Convergence history of the optimization without uncer-
tainties (left) and with uncertainties for chaos order q=2 and q=3 (right).

Figure 3: The heat transfer cavity problem: Temperature distribution for the optimal set of design
variables resulting from the optimization without (left) and with (right) uncertainties. The optimal
positions of the jets are marked with capital letters. The simulation is performed for the mean value of
the uncertain variables just for the purpose of comparison.

Case b1/L b2/L µF/Fref σF/Fref
Baseline 0.300 0.100 1. 0.01656
Optimized (without uncertainty) 0.025 0.267 1.5451 0.01713
Optimized (q=2) 0.025 0.201 1.4465 0.01521
Optimized (q=3) 0.025 0.204 1.4465 0.01514

Table 4: The heat transfer cavity problem: Normalized set of design variables, mean value and standard
deviation for the initial and the optimal positions of the jets for each optimization run. Tabulated values
are normalized using Fref .
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4 OPTIMIZATION UNDER UNCERTAINTIES OF THE DRIVAER CAR

The second case is dealing with the UQ and the shape optimization under uncertain-
ties of the DrivAer car [13] model (fig. 4). The half car of the fast–back configuration
with a smooth underbody, mirrors and wheels is used. The flow equations of this test
case are similar to those of eq. (10) where instead of the energy equation, the Spalart–
Allmaras turbulence model equation should be solved and the turbulent viscosity is added
to the bulk one. The development of the adjoint equations are similar to those for the
heat transfer problem but, since this is a shape optimization problem, grid sensitivities
(δxk/δbn) are involved in the computation. Moreover, the turbulence model should be
differentiated appropriately and contributes to both the field adjoint equations and the
gradient computation. Further details can be found in [14, 15].

Regarding the UQ study, uncertainties are introduced in the flow conditions and the
QoI is the drag coefficient (CD). For the flow without uncertainties, with freestream
velocity equal to 38.89 m/s and zero yaw angle, CD=0.31705. The uncertain variable is
the freestream velocity magnitude with µv=38.89 m/s and σv=1m/s. The UQ results are
summarized in Table 5.

Chaos Order µCD
σCD

2 0.31695 9.78433·10−4

3 0.31563 2.26329·10−3

4 0.31650 1.43895·10−3

Table 5: DrivAer car case: Mean value and standard deviation of CD on the baseline geometry for
different chaos orders. The freestream velocity is the uncertain variable.

Once the UQ study has been completed, next step is to use the adjoint method to
optimize its shape under uncertainites. The objective function to be minimized during
the design under uncertainties is that of eq. (4), with κ=1.

The convergence histories of the optimization runs are shown in fig. 5. Recall that, for
the optimization without uncertainties, each optimization cycle costs two equivalent flow
solutions (EFS; this accounts for the numerical solution of the Navier-Stokes equations or
their adjoint which have, more or less, the same cost). On the other side, for the design
under uncertainties, each optimization cycle has a cost equal to either 6 EFS (for q=2; 3
flow and 3 adjoint solutions) or 8 EFS (for q=3). It is also important to note that, for
the two examined chaos orders, the resulting optimal/robust solutions are very close each
other. Regarding the overall reduction of the QoI, in the design without uncertainties
a reduction of 5% in CD is achieved after 9 cycles (or 18 EFS). A reduction of 1.5%
is achieved in F̂ after 4 cycles (or 32 EFS). From fig. 6, an area of increased pressure is
present over the rear window of the car on the optimal shapes, which results to a reduction
in the drag force.
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Figure 4: DrivAer car case: The rear part of the car is parameterized using volumetric B–Splines. The
control points of the lattice are responsible for the deformation of the enclosed part of the car surface.
During the optimization, the red points are allowed to move while the blue ones remain fixed (in two
layers) in order to ensure C1-continuity of the shape during the optimization.
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Figure 5: DrivAer car case: Convergence history of the optimization without (left) and with (right)
uncertainties for chaos order q=2 and q=3.

Figure 6: DrivAer car case: Static pressure distribution on the baseline geometry (left), the optimal car
without considering uncertainties (middle) and the optimized with uncertainties (q=2).
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5 CONCLUDING REMARKS

A reliable method for dealing with optimization under uncertainties was presented.
The UQ needed for the computation of the statistical moments of the QoI is based on the
non–intrusive PCE. The continuous adjoint technique is used to compute the gradient of
the QoI w.r.t. the design variables at the Gaussian nodes, the weighted combination of
which is the gradient of the objective function to be used in the gradient–based design
under uncertainties. The proposed method was demonstrated into two cases, i.e. the
optimization under uncertainties of a lid–driven cavity for maximum heat transfer and of
a car model for minimum drag. In either case, significant improvement in the objective
function was observed. The integration of the adjoint technique in the robust design
algorithm is straightforward when the non–intrusive PCE is used. This technique can be
used in any engineering application where uncertainties (either in operating conditions or
shape imperfections) are present, since in the non–intrusive PCE technique the analysis
software is used as a black–box.
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