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Abstract. NURBS has been the leading mathematical standard to describe geometries
contained in standard CAD files. NURBS surfaces have successfully been connected
to adjoint optimization methods as they provide a robust and well defined deformation
tool for the shapes to be designed. Quite often, the resulting optimal NURBS shapes
are wrinkly with high–curvature areas that make the final model non–manufacturable.
Furthermore, because NURBS surfaces are manipulated through control points, there is
no direct control over the deformed shape’s volume or other geometrical constraints. For
instance, the optimal shape can have a volume smaller than the one required for it to be
operational. For instance, the volume of an aircraft wing must be sufficiently large in order
for a fuel tank to fit inside of it. In this work, we are addressing the solution to these two
issues that may arise in various shape optimization scenarios. Without loss of generality, in
what follows, the continuous adjoint technique is used to generate a sensitivity map, with
the derivatives of the objective function w.r.t. the normal displacement of the surface
points. The map is, then, projected onto the NURBS patches that are contained in a
standard CAD file of the geometry under consideration. In general, these patches, are
trimmed NURBS and the intersections between them are handled using a null space
projection method [1]. The two constraints this paper is dealing with are defined as
follows: keeping the curvature field on a NURBS–defined solid below a threshold value
and the volume of that solid above a threshold value. The constraints are differentiated
in order for them to be used within an optimization algorithm; tests are made using two
optimization examples, namely a 3D wing and an S–bend duct.
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1 Introduction

Manufacturing constraints in gradient–based optimization is an increasingly popular
research topic but not yet exhaustively documented. A reason for this could be that man-
ufacturability constraints are inherently connected with CAD parameterization. Connect-
ing the latter to gradient–based optimization methods, such as those based on adjoints,
is a challenge of its own. There is a high variety of CAD packages that are used for
industrial design and each of them has a different parameterization which CAD vendors
are very sensitive about. Therefore, in order to use a CAD parameterization inside the
optimization loop, the corresponding CAD software (which is not necessarily an open–
source tool) should be differentiated. Several options to avoid this impasse have been
investigated [2, 3, 4]. In this article, standard CAD files, such as STEP or IGES, are used
to transfer the model data and the null space projection method shown in [1] serves as a
re–parameterization technique that can handle non–conforming trimmed NURBS geom-
etry. Standard CAD files contain the Boundary Representation (BRep) of a CAD model
which consists of surface patches. The geometry of the BRep may consist of elemen-
tary curves and surfaces for simpler shapes but, for more complex ones, the geometric
entities are mainly trimmed NURBS curves and surfaces. Any relation to the design
(feature) tree or the design intent is lost through the BRep and, therefore, all manufac-
turability constraints must be defined using surface representations. In this article, two
manufacturability–related constraints are investigated:

• Curvature: Constraining the curvature of a surface (or an ensemble of surfaces)
while searching for the optimal (according to an objective function) shape of the
surface is a topic that has been covered mainly in non–CFD related optimization.
Azariadis et al. [5] investigated the generation of planar development of 3D surfaces
by taking into consideration the geodesic curvature, while Moreton et al. [6] focused
on the construction of surfaces while blending, by minimizing curvature variation.
In the attempt to constrain the curvature of a surface, one is obliged to choose
which curvature (mean, Gauss, principal) should be constrained. In this paper, the
curvatures in both principal directions are chosen to be constrained.

• Volume: Because of the NURBS free–form surface nature, the volume of a shape
defined by a set of watertight NURBS surfaces can not be constrained in an intuitive
manner. Therefore, the final volume can be smaller than a threshold defined by a
designer. The volume of such a shape is computed using the Gauss divergence
theorem for closed volumes. During the optimization, the volume of the design is
constrained to remain greater than a threshold.

In the optimization examples shown in this paper, the adjoint technique [7, 8] is used
for computing sensitivity derivatives. The adjoint technique in its discrete [9, 10], or
continuous [11, 12, 13] form, is excellent for large scale optimization problems. In this
article, the continuous adjoint is used.
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This paper is structured as follows: In section 2, the basic ingredients of BRep–based
optimization are explained and, in sections 3 and 4, the constraints are mathematically
expressed. Then, in section 5, the proposed methods are tested in two cases.

2 BRep–Based Optimization

In this section, the manner in which standard CAD files are inserted in the optimization
is presented. Initially, NURBS surfaces are discussed and, then, trimmed NURBS patches
along with the method to handle their intersections are analyzed.

NURBS surfaces [14] are a generalization of tensor product B–Splines. Let us assume

a NURBS surface with an (n × m) control grid, its control points ~Pi,j ∈ R3 and their
respective weights wi,j. Then, a point on the surface corresponding to parametric values
(u, v) is

~S(u, v) =

∑n
i=1

∑m
j=1N

p
i (u)N q

j (v)wi,j ~Pi,j∑n
k=1

∑m
l=1N

p
k (u)N q

l (v)wk,l
=

n∑
i=1

m∑
j=1

Ri,j(u, v)~Pi,j (1)

where (p, q) are the polynomial degrees per parametric direction.
Since eq. 1 is linear w.r.t. the control points, its differentiation is straightforward. The

result of the differentiation w.r.t. each control point is a diagonal rank 2 tensor,

d~S(u, v)

d~Pi,j
= diag(Ri,j(u, v), Ri,j(u, v), Ri,j(u, v)) (2)

In a similar manner, one can differentiate the first and second derivatives of the surface
w.r.t. the parameters u and v.

In NURBS–based shape optimization on CAD models, ensuring smoothness and wa-
tertightness of the model is a non–trivial task. The parameterization of the different
patches is non–conforming and the patches have trimmed parametric domains; therefore,
this cannot be resolved by simply constraining the boundary control points of each patch.
To resolve this issue, the method explained in [1] is used. This method initially identifies
the intersecting trimmed NURBS patches of a CAD model. Then, for each intersection,
it imposes watertightness (C0 continuity) and smoothness (C1 continuity) for a number of
points on it. The C0 and C1 constraint equations can be handled to become linear w.r.t.
the control points of both patches touching the intersection. Assuming the imposition of
these constraints on n points along the intersecting curve and that the number of control
points in both patches is m, then all the constraint equations can be put in the following
matrix form

An,mPm,3 = 0n,3 (3)

where A is the n × m coefficients matrix and P is the m × 3 matrix that stores the
coordinates of a control point in each row. The space which the solutions to eq. 3 lie on
is the null space of A. In an optimization scenario in which eq. 3 must be satisfied, the
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control point sensitivities must be projected onto this space to ensure that the update
direction will not violate the constraints.

3 The Curvature Constraint

In the attempt to constrain the curvature field on NURBS surfaces, a prerequisite is
the selection of the best curvature expression, which the constraint should be imposed
to. Based on this, an inequality constraint must be imposed for all points on a NURBS
surface.

The curvature at each point of a surface can be computed using the coefficients of its
first and second fundamental forms [15], defining the tensors F1 and F2 respectively. At
each point, the eigenvalues of the matrix F−11 F2 provide the principal curvatures κ1 and
κ2 and their eigenvectors provide the corresponding directions. Through them, the mean
and Gaussian curvatures

κmean =
κ1 + κ2

2
, κGauss = κ1κ2 (4)

can be defined. The principal curvatures represent the curvatures along perpendicular
directions and, therefore, by constraining them to have an absolute value less than a
threshold, a desired local ”flatness” of the surface can be achieved. The expression chosen
to be constrained, therefore, is

κ =
1

2
(κ21 + κ22) (5)

Minimizing the quantity given by eq. 5 is the means to control curvature. The ex-
pression in eq. 5 refers to the curvature at a single surface point and is, therefore, local.
To fully constrain the curvature on a NURBS surface, a grid of u, v parameters must be
created, which should be fine enough to capture the surface details. Then, an inequality
constraint for κ must be imposed at each grid point. This is impractical as it can result
in a number of constraints in the order of millions. An alternate approach is to reduce all
the inequality constraints to a single equality constraint. This can be done by employing
a filtering function at each grid point. The filtering function receives the curvature metric
at a grid point (eq. 5) and returns a zero value and derivative if this metric is less than
the threshold. A function like this can take the form

Ffilter(κ) =


0 , κ < κm
α(κ− κm)4 + β(κ− κm)3 , κm ≤ κ < κs
κ+ (ys − κs) , κ ≥ κs

(6)

Terms involved in eq. 6 are as in table 1, ensuring second–order continuity throughout
its domain of definition. κm denotes the curvature threshold while κs (κs > κm) denotes
a metric value at which F ′filter(κ) becomes maximum.

By integrating the filter function over the patches of a NURBS defined model yields

C1 =

¨
S

Ffilter(κ)dS (7)
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Table 1: Quantities in eq. 6.

Variable Value

κm Curvature upper bound

κs A value at which F ′filter(κ) becomes maximum

α − 1
2(κs−κm)3

β −2α(κs − κm)

ys α(κs − κm)4 + β(κs − κm)3

 0
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Figure 1: The filtering function for κm = 2.5, κs = 3.5.

Nullifying the constraint C1 leads to the satisfaction of all the constraints.
As an example of the effectiveness of the constraint, a simple test on a semi–cylindrical

NURBS surface is presented. Its radius is ρ = 0.5 which leads to a uniform κ = 2 at all
of its points. Eq. 7 is formulated for three different values of κm and equation C1 = 0 is
solved iteratively by selecting the control point positions. For all three cases κs = κm+0.1
has been set for consistency. Solving C1 = 0, leads the curvature metric of each surface
point to become less than κm. The resulting shapes as well as the convergence history of
all three cases, are shown in fig 2.

Finally, in order to demonstrate how κs affects convergence rate and/or stability the
solution of C1 = 0 was attempted for the same surface with κm = 1.0 but for three
different values of κs (fig. 3).
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Figure 2: Left: The initial cross–section of a semi–cylindrical surface (blue) and the
cross–sections resulting from the solution of C1 = 0 for κm = 1.5 (red), κm = 1.0 (black)
and κm = 0.5 (green). Right: The convergence history of the three iterative procedures
leading to the results presented on the left. Curves for κm = 1.5 (red), κm = 1.0 (black)
and κm = 0.5 (green) are shown.

4 The Volume Constraint

For a watertight solid model, its volume can be computed using only the nodal coor-
dinates of its boundary patches. Assume such a model and let V be its volume and S
its total surface. From the Gauss divergence theorem, it is known that the volume of a
watertight shell of surface S can be computed using its boundary surfaces. It is obvious
that the total surface of a solid is a union of all its trimmed patches ~σi and, therefore, the
volume is given by

V =
1

3

∑
i

ˆ
u

ˆ
v

~σi(u, v) · ~n(u, v) ‖~σu(u, v)× ~σv(u, v)‖ dudv (8)

The volume constraint is an inequality that enforces the volume to be lower (in cases
where a model must fit inside an assembly) or greater (in cases where an assembly must
fit inside a model i.e. fuel tank) than a threshold. For the latter case, the constraint has
the expression

C2 = V − Vmin ≥ 0 (9)

This constraint is handled using slack variables within the Augmented Lagrangian
Method (ALM) algorithm [16].

5 Examples

In this section, the constraints are tested on two test problems. For the first case,
(the S–bend duct shown in fig. 4) the effectiveness of the curvature constraint is tested,
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Figure 3: The convergence of the iterative solution of C1 = 0 for the semi–cylindrical test
case. Curves for κs = 1 (black), κs = 0.5 (red) and κs = 0.1 (green) are shown.

while for the second, (an extruded NACA0012-based wing) the effectiveness of the volume
constraint is examined.

5.1 The S–bend Duct

Figure 4: The S–bend climate duct.

The S–bend climate duct is a test case provided by VolksWagen AG. The goal is to
minimize the viscous losses of the flow subject to the deformation of the S–section of the
duct. The objective function has the following form

J =
∑
inlet

Q(p+
1

2
ρU2)dA−

∑
outlet

Q(p+
1

2
ρU2)dA (10)

where p is the pressure, U is the velocity and ρ is the density of the fluid while Q is the
flow rate.
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The geometry consists of 46 trimmed NURBS patches, among which 28 belong to the
S–section. These 28 patches are high–degree surfaces and this results to a total number
of 5830 control points (17490 degrees of freedom) on the S-section. The flow analysis is
done using a mesh of 700,000 cells. The flow is laminar with Re ≈ 400.

Figure 5: Curvature iso-areas on the optimal shape resulting from the unconstrained (left)
and the constrained optimization (right) of the S–bend duct.

Initially, an unconstrained adjoint optimization is performed on the duct that leads to
a total viscous losses drop of 9.1 % after 40 iterations. However, the resulting shape, due
to the high number of control points, becomes wavy with areas of very high curvature (fig.
5). Then, a constrained optimization is performed with κm = 106 . Using the constrained
optimization, a drop of 3.9 % is achieved. The curvature map on the optimal solution
of the constrained and unconstrained optimization are shown in figure 5 and the final
CAD surfaces are shown in fig. 7. It is noticeable from the curvature map that the shape
attempts to form the wavy surface but the constraint function halts this process. Finally,
the convergence history of the objective function and the constraint, can be seen in fig. 6.
The optimization was performed using steepest descent updates and the search direction
was computed using ALM.

5.2 The Extruded NACA0012 Wing

The NACA0012 airfoil which lies on the X − Y plane, is fitted by a NURBS curve.
This NURBS curve is then extruded along the Z axis to create a wing (fig. 8).

The volume of the wing spanning between the planes at Z = 0m and Z = 0.5m
is Vinit = 0.0412. The flow analysis around the wing is performed using a mesh of
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Figure 6: The convergence history of the viscous losses objective function (blue) and the
curvature constraint (red) for the S–bend duct.

Figure 7: Comparison of the optimal shape resulting from the constrained (right) and the
unconstrained (left) optimization of the S–bend duct.

approximately 250, 000 cells. The flow is turbulent (Re = 106) with a free stream velocity
U = 60m/s and an angle of attack at 0o. The target of the constrained optimization is to
reduce the drag force on the wing while making sure that V ≥ Vmin = 0.8Vinit = 0.033. As
shown in fig. 9, the optimization procedure starts with the objective function dominating
the constraint but, as the penalty factor of the constraint increases, the optimization
converges to a 4.3% drop in the drag force.

6 Conclusions

In this article, the implementation and testing of two geometric constraints is presented.
Firstly, a method to constrain curvature was shown. Using this constraint, an optimal
NURBS shape can refrain from becoming oscillatory (with high curvature regions) and
can have a much smoother surface. This is highly advantageous, since high curvature
regions make a model hard to manufacture (or even non–manufacturable). Secondly, a
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Figure 8: The NACA0012 extruded wing (light blue) and its NURBS control grid (black
wireframe).
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Figure 9: The convergence history of the drag objective function (blue) and the constraint
function (red) for the NACA0012 wing.

method to constrain the volume of a watertight NURBS shape was shown. This can
be very useful in optimization scenarios, in which the objective function continuously
reduces the volume of the shape (similarly to the one shown in section 5.2). Finally, the
constraints were tested for effectiveness using a climate duct and an extruded NACA0012
wing.
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