
6th European Conference on Computational Mechanics (ECCM 6)
7th European Conference on Computational Fluid Dynamics (ECFD 7)

1115 June 2018, Glasgow, UK

MUPIF: MULTI-PHYSICS INTEGRATION PLATFORM

BOŘEK PATZÁK1, VÍT ŠMILAUER1 AND MARTIN HORÁK1

1 Czech Technical University in Prague, Faculty of Civil Engineering, Department of Mechanics
Thákurova 7, 166 29 Prague 6, Czech Republic borek.patzak@fsv.cvut.cz,

vit.smialuer@fsv.cvut.cz, martin.horak@fsv.cvut.cz

Key words: Simulation platform, Integration, Distributed computing, Interoperability

Abstract. Paper describes the desing of distributed integration platform enabling to
create complex coupled workflows from existing simulation tools. The main features as
well as selected real world applications are presented.

1 INTRODUCTION

A reliable multi-scale and multi-physics numerical modeling requires including all rel-
evant physical phenomena along the process chain and across multiple scales. The com-
plexity of problems requires combination of knowledge from different fields. This brings
in also the challenges for software engineering and design. There is a strong need for
integration platforms, that enable inter-operable integration of existing simulations tools
and databases into a complex simulation work-flows, providing capability to exchange
information and efficiently use available computing resources.

The interoperability by definition implies standards. Traditional approaches have been
based on syntactic interoperability, based on specific communication protocols and conver-
sion tools. The more attractive are approaches based on semantic interoperability, where
data are exchanged together with their meaning, which allows for automated machine
interpretation, translation, and verification [1].

Integration platform should enable integration of existing simulation tools allowing to
perform the data exchange and steering. Regarding the development in hardware and
software technology in last decades, the integration platform should enable integration
of distributed and parallel applications over the network in an efficient and scalable way,
based on standardized communication protocols. Standard methods, such as ”naming
services” or a ”service discovery” that allow individual component lookup based on name
and/or services should be provided, as well as services for job and resource allocation on
remote computing resources.

The aim of presented paper is to describe the design of distributed, object-oriented
simulation platform MuPIF [2, 3] and illustrate its use on several use cases. The MuPIF
is an open source project developed in Python [5, 6], licensed under LGPL license.



Bořek Patzák, Vı́t Šmilauer and Martin Horák

2 DESIGN OF THE PLATFORM

MuPIF is designed using object-oriented approach, where classes are introduced for
each identified entity. The entities include, among others, individual simulation tools
and exchanged data. The strength of object-oriented approach is in ability to express
similarities between classes using inheritance, a concept allowing to derive one class from
another by inheriting attributes and services of the parent class. Derived class can extend
parent class by i) adding new attributes or methods and ii) provide its own implementation
of inherited methods (specialization). In this way parent class can declare behavior or
interface (in terms of defined services) that is common to all derived classes. Typically,
the role of parent classes is only to declare the common interface, the individual methods
are implemented by the derived classes representing specific objects, then such a parent
class is called an abstract class. One can create a hierarchy of abstract classes allowing
to define the interfaces in a hierarchical and structured way.

In MuPIF, the generic abstract classes are introduced for models (simulation tools)
and generic data types, such as properties, spatial fields, time steps, etc. The definition
of abstract interfaces for models as well as for high level data types is one of the unique
features of the MuPIF. It allows to achieve true plug&play architecture, where individual
application as well as data representations can be plugged into existing work-flows and
be manipulated using the same interface. All classes are derived from top level abstract
class, MuPIFObject, declaring a generic interface common to all components. It defines
the services allowing to attach the additional information about the individual object, so
called metadata. The metadata play important role, as they allow to track the origin of
the data, information about data units, etc. Some metadata have to be defined by user
or simulation tool, some can be automatically collected by the platform.

The interoperability in the MuPIF is achieved by standardization of application and
data component interfaces, it is not relying on standardized data structures or protocols.
Any existing data format can be plugged in and transparently used, provided the cor-
responding data interface is implemented. At present, the platform is being integrated
into Business Decision Support System (BDSS) in the frame of EU H2020 Composelector
project [4]. The aim of the framework is to demonstrate the business decision process dur-
ing the selection of materials and manufacturing processes for which data are available.
However, the developed BDSS platform will offer the possibility to explore new mate-
rial designs by offering the possibility to investigate, “develop” and evaluate, in physical
terms, new types of materials and check their potentials with regard to the required
property profile and KPIs. In the Composelector project, the BDSS enables the actors
from business and/or technical departments within the manufacturing organization to
drive decisions on material modeling, whilst bringing the various modelling tools together
within an automated and seamless workflow. A graphical web editor based on standard
on Business Process Model and Notation (BPMN) and ESTECO technology [7] enables
the modeling and execution of business workflows. It integrates the material information
management system, GRANTA MI [8], an enterprise level, web-accessible platform for
materials and process data/information to demonstrate the management of physical and

2



Bořek Patzák, Vı́t Šmilauer and Martin Horák

Figure 1: The Composelector BDSS schema

virtual data, reporting and decision-making for materials and process selection. MuPIF
serves the simulation platform, where the simulation workflows are defined and executed.

2.1 APPLICATION INTERFACES

The application interface allows to perform data exchange with the simulation tool
and steer its execution. The data exchange methods allow to set or get specific data
component, that can represent simple data object, such as property, or more complex
data objects, representing, for example, spatial fields, computational meshes, force field
potentials, etc. The individual application are not supposed to interpret the raw data
structures, but rather they interpret the data using the interfaces. of representing data.
In this way, the individual simulation tools are abstracted from the details of particular
data representation. The advantages of this concept are described in the next chapter.
The steering services allow to update the simulation state for given time step, report
critical time step, check simulation status, etc. Table 1 lists the most important methods
of the application interface.

To connect an existing simulation tool to the platform, one needs to implement the
Application interface. This can be implemented in a number of ways, depending on par-
ticular application. The implementation consists in implementing a derived class from
abstract Application class (defining the application interface) and implementing the re-
quired methods accordingly. In general, two different approaches can be distinguished.
The first one, called direct approach, is based on direct interaction with the application
using its scripting interface or programming interface (requires to link the application
as a library). The second option is to communicate with the simulation tool indirectly,
usually using input/output files. In this case, the application interface records all settings

3



Bořek Patzák, Vı́t Šmilauer and Martin Horák

Table 1: Application interface definition (simplified)

Method Description
Init (inFile, workdir) Constructor. Initializes the application.

getDataComponent
(dataCompID, time)

Returns data identified by its ID evaluated at given time.

setDataComponent
(dataComp)

Registers the given data component in application.

solveStep
(tStep, stageID=0,
runInBackgr=False)

Solves the problem for a given time step. tStep is object
representing solution time step.

isSolved () Returns true or false depending whether solve has completed
when executed in background.

wait () Wait until solve is completed when executed in background.

finishStep (tstep) Called after a global convergence within a solution time step.

of parameters and variables, and when the solution update is requested, the input file is
produced, simulation tool is called and finally, the output file is parsed for output param-
eters. Up to now, several interfaces have been implemented, including commercial as well
as open source simulation tools. Recent applications illustrated connections to Matlab,
Comsol, X-stream, Micress and many other simulation tools. The simulation workflows
define execution and data flow for complex simulation tasks combining individual simula-
tion tools. The workflows themselves implement Application interface and this is another
unique feature of MuPIF platform. This allows to regard and use complex workflows
as black-box simulation tools. In addition, a hierarchy of simulation workflows can be
naturally defined. Data interfaces

In case of data, the MuPIF is trying to abstract from particular data representation.
This is achieved by defining the interfaces for data types as well. For example, consider
a spatial fields describing variable with spatial distribution. It can be represented in a
number of different ways, including mathematical formula as a function of spatial coordi-
nates or interpolated set of spatially distributed point values, for example. However, it is
possible to identify a typical operations, that could be expected from a spatial field, like
for example, operation that evaluates the spatial field at given position. The identified
operations then constitute the data type interface, allowing to manipulate all instances
using the same interface. The data represented by objects bring in several advantages,
as object is an encapsulation of raw data and methods operating on the data. There-
fore simulation tool does not interpret the data itself, it is the role of the interface to
declare the needed methods to interpret the data. The interface allows to abstract from
particular representation of data, therefore allowing to naturally support different data
storage formats. This allows to create specific data representations targeted for specific
purpose, as voxel-based or vector-based micro-structure representations, for example, still

4



Bořek Patzák, Vı́t Šmilauer and Martin Horák

fully compatible with all the components. In many cases, the fact that simulation tools
can work with different data representations abstracted by the common interface, can
reduce the need for data transformations, which can also reduce numerical errors intro-
duced during transformation. In addition, as the interface should be the only way how
to operate with data, the interface can also abstract from actual storage of raw data, the
data can be located in memory, in file, database, or even distributed over the network.
The standardization in MuPIF is therefore focused on standardization of data interfaces
rather than on standardization of data structures.

2.2 DISTRIBUTED DESIGN

Complex simulations are resource and time demanding. Distributed and parallel com-
puting environments provide needed resources and computational power. Common feature
of these environments are distributed data structures and concurrent processing on dis-
tributed processing nodes. This brings in an additional level of complexity that needs to
be addressed. The important role of the simulation framework is to provide a communi-
cation mechanism that will take care of the network communication between the objects.
An important feature, particularly for the end user, is transparency, hiding the details of
remote communication to the user and allowing to manage local and remote objects using
the same interface.

In MuPIF, the communication layer is built on a transparent distributed object system
fully integrated into Python [5, 6]. It takes care of the network communication between
the objects when they are distributed over different machines on the network, hiding all
socket programming details. One just calls a method on a remote object as if it were a
local object – the use of remote objects is (almost) transparent. This is achieved by the
introduction of so-called proxies. A proxy is a special kind of object that acts as if it were
the actual object. Proxies forward the calls to the remote objects, and pass the results
back to the calling code. In this way, there is no difference between simulation workflows
for local or distributed cases, except for the initialization, where, instead of creating local
application interfaces, one has to connect to their remote counterparts. From the position
of the end user, the transparent communication eases the development and maintenance.
Security can be granted using VPN with the encryption and authorization services. The
VPNs work on a lower level of communication (OSI Layer 2/3) by establishing “virtual”
(existing on the top of other networks) network, where all nodes have the illusion of di-
rect communication with other nodes through TCP or UDP, which have IP addresses
assigned in the virtual network space. The VPN itself communicates through existing un-
derlying networks, but this aspect is not visible to the nodes; it includes data encryption,
compression, routing, but also authentication of clients which may connect to the VPN.
Supporting tools for monitoring platform infrastructure are available.

3 APPLICATIONS

Recently, the MuPIF platform has been used in modeling fire impact on steel struc-
tures (combing CFD based fire simulation tool with nonlinear structural analysis) and

5



Bořek Patzák, Vı́t Šmilauer and Martin Horák

Figure 2: Moda diagram of the simulation workflow considered in Composelector project

in frame of EU 7FP MMP [9] to model production and performance of novel solar cells
and phosphor LEDs. At present, it is used in the frame of EU H2020 Composelector to
design innovative composite materials with applications in aerospace (design of compos-
ite airplane frame, see Fig. 2 for modeling workflow) and automotive industry (design of
composite leaf springs and tires). The complex simulation workflows involve combination
of several simulation tools starting on atomistic/molecular scale to determine basic mate-
rial properties, bridging several resolution scales and ending up on component/structural
scale, including commercial and open source modeling tools distributed and executed
across different locations and computing resources.

We demonstrate MuPIF capabilities on a linked CFD-thermomechanical task, consist-
ing of a steel beam placed into a furnace with gas burners, see the geometry in Fig. 3.
The furnace is of dimensions 3.0 m x 4.0 m and 2.2 m height and heated by 8 natural gas
burners. The simply-supported beam is made from steel I profile 3.8 m long, placed just
under the furnace ceiling.

Two codes are used for the a linked simulation; Fire Dynamics Simulator software
(FDS), developed at NIST [10] and OOFEM used for thermo-mechanical analysis, de-
veloped at Czech Technical University in Prague [11]. Figure 4 shows their interaction
using MODA diagram coined by EMMC. MuPIF interconnects and orchestrates all the
continuum models. The results were computed end exported to VTU files. Figure 5 left
shows a cross-section through the middle of the furnace. One can see the two FDS meshes,
one coarse on the whole furnace and one finer around the beam, which is necessary for
the interpolation close to the ceiling. Figure 4 right provides detailed normal stress σx at
time t=576 s.

6



Bořek Patzák, Vı́t Šmilauer and Martin Horák

Figure 3: FDS furnace model from Smokeview (left) and meshes from FDS and OOFEM (right).

Figure 4: Data flow using MODA diagram.

Figure 5: Temperature field at t=576 s with a cross-section in the middle of the furnace (left) and
normal stress σx (right).

ACKNOWLEDGEMENTS

The authors would like to acknowledge the support of EU H2020 Composelector project
(GA no: 721105).

7



Bořek Patzák, Vı́t Šmilauer and Martin Horák

REFERENCES

[1] European Materials Modelling Council, www.emmc.info, 2017.

[2] Patzák,B. and Rypl, D. and Kruis, J. Mupif – a distributed multi-physics integration
tool. Advances in Engineering Software, 60–61(0):89 – 97, 2013.

[3] Patzák, B. and Šmilauer, V. and Horák, M.: MuPIF object-oriented integration plat-
form, www.mupif.org, 2018

[4] Composelector: Multi-scale Composite Material Selection Platform with a Seamless
Integration of Materials Models and Multidisciplinary Design Framework, EU H2020
project no. 721105, www.composelector.net, 2018

[5] Python Software Foundation. Python Language Reference, version 2.7., [Online].
Available: http://www.python.org.

[6] Pyro - Python Remote Objects, [Online]. Available: http://pythonhosted.org/Pyro.

[7] BeePMN, the collaborative BPMN editor powered by ESTECO, www.beepmn.com.

[8] GRANTA MI: system for enterprise materials information management, Granta,
https://www.grantadesign.com/products/mi/system.htm.

[9] Multiscale Modelling Platform: Smart design of nano-enabled products in green
technologies, EU FP7 project no. 604279, http://mmp-project.eu

[10] NIST: FDS, Fire Dynamics Simulator, home page. https://pages.nist.gov/fds-smv/,
2017.

[11] Patzák, B. OOFEM – an object-oriented simulation tool for advanced modeling of
materials and structures. Acta Polytechnica, 52(6):59-66, 2012.

8


