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Abstract. In this paper we study mechanical model for a layered thermoelastic composite
and its stability in high-speed axially movement. We consider statical forms of the loss
of stability and apply some approaches, based on averaging of the thermomechanical
characteristics of layered composite materials and find some effective modulus of the
considered composite structures.

1 INTRODUCTION

In our previous studies (see e.g., Banichuk et al. [1], [2], [3], [4], [5], [6]), we have con-
sidered many aspects of mathematical modelling of axially moving materials. Examples
include the processing of paper or steel, fabric, rubber or some other continous material,
and looping systems such as band saws and timing belts. In this article, we have will
extend our studies focusing now on layered composites and their thermoelastic stabilities
in movement.

Frequently used models for systems of axially moving material have been travelling
flexible strings, membranes, beams, and plates. The dynamic and stability aspects dis-
cussed in this paper were first reviewed in the article by Mote [7]. Natural frequencies are
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commonly analyzed together with the stability. It was realized early on that the vibration
problem for an axially moving continuum is not the a conventional one. Because of the
longitudinal continuity of the material, the equation of motion for transverse vibration
will contain additional terms, representing a Coriolis force and a centripetal force acting
on the material. As a consequence, the resonant frequencies will be dependent on the
longitudinal velocity of the axially moving continuum, as was noted by Archibald and
Emslie [8], as well as Swope and Ames [9], Simpson [10], and Mujumber and Douglas [11].

Travelling beams have been further analyzed by e.g. Parker [12] in his study on gyro-
scopic continua, and by Kong and Parker [13], where an approximate analytical expression
was derived for the eigenfrequencies of a moving beam with small flexural stiffness. Re-
sponse predictions have been made for particular cases where the excitation assumes
special forms, such as harmonic support motion, see Miranker [14], or a constant trans-
verse point force as presented by Chonan [15]. Arbitrary excitations and initial conditions
were analyzed with the help of a modal analysis and the Green’s function method in the
article by Wickert and Mote [16]. As a result, the critical speeds for travelling strings and
beams were explicitly determined. Travelling strings and beams on an elastic foundation
have been investigated by, e.g., Bhat et al. [17], Perkins [18], Wickert [19] and Parker
[20].

The loss of stability was studied with an application of dynamic and static approaches
in the article by Wickert [21]. It was shown by means of numerical analysis that in all cases
instability occurs when the frequency is zero and the critical velocity coincides with the
corresponding velocity obtained from static analysis. The dynamical properties of moving
plates have been studied by Shen et al. [22] and by Shin et al. [23], and the properties
of a moving paper web have been studied in the two-part article by Kulachenko et al.
[24, 25]. Critical regimes and other problems of stability analysis have been studied e.g.
by Wang [26] and by Sygulski [27].

The results indicating that axially moving beams experience divergence instability at
a sufficiently high beam velocity have been obtained also for beams interacting with
external media; see, e.g., study by Chang and Moretti [28]. In a study by Banichuk et al.
[29], the authors extended these ideas to a two-dimensional model of the web, considered
as a moving plate under homogeneous tension but without external media. The most
straightforward and efficient way to study stability is to use a linear stability analysis.

In an article by Hatami et al. [30], the free vibration of a moving orthotropic rectan-
gular plate was studied at sub- and supercritical speeds, and its flutter and divergence
instabilities at supercritical speeds. The study is limited to simply supported boundary
conditions at all edges. For the solution of equations of orthotropic moving material,
many necessary fundamentals can be found in the work by Marynowski et. al (see e.g.
[31] and [32]).

In the present study, we will limit our focus to moving layered composites. We consider
the statical forms of the loss of stability and apply some approaches, based on averaging
of the thermomechanical characteristics of layered composite materials and find some
effective modulus of the considered composite structures. We will perform the studies
mainly using analytical approaches. The article is structured in the following manner.
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First, we will formulate equations for the instability of a homogeneous thermoelastic
continuous panel in the Section 2. In the Section 3, we consider a layered thermoelastic
composites. Finally, in the Section 4 we will draw conclusions.

The summarizing result of this article is that in the case of the considered multilayered
composite, we have realized the technique of averaging of thermomechanical properties of
different layers and found the effective composite characteristics. This has been done using
basic material properties and taking into account that there is no sliding and discrepan-
cies between layers. By using the found averaged effective modulus including combined
effective characteristics, the required values were obtained and used in the final formulas
for critical velocities and temperatures of a moving composite.

2 STABILITY OF THE HOMOGENEOUS THERMOELASTIC CONTIN-
UOUS PANEL IN AXIAL MOVEMENT

The homogeneous panels are mechanically simple supported at the inflow (x = −`) and
out-flow (x = `) boundaries of the panels. The panels are travelling at a constant velocity
V0 in the x- direction of the rectangular global coordinate system and are loaded by axial
tension T0 and thermal loads. The length 2` and the total thickness H are supposed to
be given, while −` < x < ` and −H/2 < z < H/2.

Free transverse vibrations of a homogeneous panel axially moving with constant velocity
and loaded by axial tension and heated by some temperature are described by the following
equation for transverse displacement w and simply supported boundary conditions

m

(
∂2w

∂t2
+ 2V0

∂2w

∂x∂t
+ V 2

0

∂2w

∂x2

)
=

(
T0 −

EH

1− ν
εθ

)
∂2w

∂x2
−D∂

4w

∂x4
(1)

(w)x=−` = 0,

(
∂2w

∂x2

)
x=−`

= 0, (w)x=` = 0,

(
∂2w

∂x2

)
x=`

= 0 (2)

where m, E, ν, D are, respectively, the mass per unit area, Young’s modular, Poisson
ratio, bending rigidity (D = EH/12(1− ν2)) and the deformation εθ is defined as

εθ = αθθ, θ = θa − θ0. (3)

Here α0 is a linear expansion coefficient, θ is the temperature discrepency, θ0 is the
temperature of zero deformation, θa is the actual temperature.

In a stationary case, when
∂w

∂t
=
∂2w

∂t2
= 0 (4)

the transverse displacement w = w(x) satisfies the equation

d4w

dx4
+ λ

d2w

dx2
= 0 (5)

where parameter λ (eigenvalue) is given by the expression

λ =
1

D

(
mV 2

0 +
EH

(1− ν)
αθθ − T0

)
= f

(
V 2
0 , θ
)
. (6)
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If we introduce a new unknown variable Ψ(x) as

Ψ(x) =
d2w

dx2
, −` ≤ x ≤ ` (7)

we obtain the following spectral problem

d2Ψ

dx2
+ λΨ = 0 (8)

Ψ (−`) = 0, Ψ (`) = 0. (9)

Here the value λ plays the role of an eigenvalue. A nontrivial solution to the formulated
eigenvalue problem can be represented as

Ψ(x) = C1 sin

(√
λ

(
x+ `

2

))
+ C2 cos

(√
λ

(
x+ `

2

))
(10)

with two arbitrary coefficients C1 and C2 and an unknown value λ. Taking into account
(9) and (10) we will have C2 = 0 and

λ =

(
jπ

`

)2

, j = 1, 2, . . . (11)

Ψ(x) = C1 sin

(
jπ

2`
(x+ `)

)
(12)

with arbitrary constant C1.
Thus, for given problem parameters D, E, ν, H, `, T0, m, V0, αθ we obtain the critical

temperature θdiv of instability (divergence of buckling)

θdiv =
(1− ν)

EHαθ

{
D
(π
`

)2
+ T0 −mV 2

0

}
(13)

and
λmin =

(π
`

)2
(14)

corresponding the minimal j = 1 in the equation (11).
Analogously we find the critical instability velocity (squared) (V 2

0 )
div as:

(
V 2
0

)div
=

1

m

{
D
(π
`

)2
+ T0 −

EHθαθ
(1− ν)

}
(15)

where D, E, ν, H, `, θ, αθ, m are considered as a given positive parameters. The safety
domain for stability in the values (θ, V 2

0 ) is defined by the inequality

f
(
V 2
0 , θ
)
< λmin =

(π
`

)2
(16)
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Figure 1: Safety domain OAB.

that is reduced to the condition

F
(
V 2
0 , θ
)
≡ 1

D

(
`

π

)2

f
(
V 2
0 , θ
)

= CvV
2
0 + Cθθ − C0 < 0 (17)

where

Cv =
m

D

(
`

π

)2

Cθ =
EHαθ
D(1− ν)

(
`

π

)2

(18)

C0 =
T0
D

(
`

π

)2

+ 1

The safety domain of the values V 2
0 , θ has a triangular shape OAB shown in the Figure

1.

3 LAYERED THERMOELASTIC COMPOSITE

Consider the layered panel that is symmetrically composed with respect to a middle
plane (see Figure 2) and consist of 2n+1 (odd number) thermoelastic layers characterized
by mass per unit area mi, Young’s modulus Ei, Poisson ratio νi, coefficient (αθ)i and
distances hi from the symmetry of internal panel structure, i.e.

E(z) = E(−z), ν(z) = ν(−z), αθ(z) = αθ(−z) (19)
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and derive the expressions for effective moduli Def, νef, εef
θ and mef. To this end we apply

the formulas for stresses and strains and the expression for bending moment∫ H/2

−H/2
σxzdz =

(
2

∫ H/2

0

z2E(z)dz
1− (ν(z))2

)
∂2w

∂x2
= Def

(
∂2w

∂x2

)
. (20)

Thus we find the expression for effective bending rigidity in the form

Def = 2

∫ H/2

0

z2E(z)

1− (ν(z))2
dz. (21)

Using mechanical and geometric characteristics of the panel layers Ei, νi, hi we evaluate
the integral in the equation (21). We will have the following formula

Def =
2

3

En+1

1− ν2n+1

h3n+1 +
2

3

n∑
i=1

Ei
1− ν2i

(
h3i − h3i+1

)
. (22)

In an analogous manner, we derive the formulas for an effective Poisson’s ratio νef and for
effective thermal deformation εef

θ of a nonhomogeneous isotropic layered panel. We have

νef =
2

Def

∫ H/2

0

z2ν(z)E(z)

1− (ν(z))2
dz =

=
2

3Def

[
νn+1En+1h

3
n+1

1− ν2n+1

+
n∑
i=1

Eiνi
1− ν2i

(
h3i − h3i+1

)]
(23)

εef
θ =

2

H

∫ H/2

0

αθ(z)θdz =
2

H

{
(αθ)n+1θn+1hn+1 +

n∑
i=1

(αθ)i θi (hi − hi+1)

}
(24)

Besides that we have the following expression for mef:

mef = mn+1 + 2
n∑
i=1

mi. (25)

We derive also the corresponding formula for a joint expression

a(z) =
HE(z)

1− ν(z)
εθ(z) =

HE(z)

1− ν(z)
αθ(z)θ(z) (26)

in the following form

aef =
2

H

∫ H/2

0

a(z)dz = 2

{
(αθ)n+1En+1θn+1

1− νn+1

hn+1 +
n∑
i=1

(αθ)iEiθi
1− νi

(hi − hi+1)

}
. (27)
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The last formula contains many particular cases. Thus, if the Poisson’s ratio and the
temperature are the same for all materials, i.e.

ν1 = ν2 = ν3 = · · · = νn+1 = ν, (28)

θ1 = θ2 = θ3 = · · · = θn+1 = θ (29)

then we will have

aef =
2θ

1− ν

{
(αθ)n+1En+1hn+1 +

n∑
i=1

(αθ)iEi (hi − hi+1)

}
(30)

If besides (28), (29) the Young’s modulus are equal for all layers, i.e.

E1 = E2 = E3 = · · · = En+1 = E (31)

then we obtain

aef =
2Eθ

1− ν

{
(αθ)n+1 hn+1 +

n∑
i=1

(αθ)i (hi − hi+1)

}
. (32)

To use the obtained results (18)-(32) for a stability analysis we will take (13), (15) and
suppose that

D = Def, ν = νef, a = aef, m = mef (33)

in the equations (13), (15). We will have

(
V 2
0

)div
=

1

mef

{
Def
(π
`

)2
+ T0 − aef

}
(34)

θdiv =
1

bef

{
Def
(π
`

)2
+ T0 − aef

}
(35)

where

bef =

(
EHαθ
1− ν

)ef

= 2

{
(αθ)n+1En+1

1− νn+1

+
n∑
i=1

(αθ)iEi
1− νi

(hi − hi+1)

}
(36)

4 SOME NOTES AND CONCLUSIONS

In this paper the stability problems have been studied for homogeneous thermoelastic
panels and for nonhomogeneous layered composites that perform axial movement. The
critical velocities of instability and critical temperatures of buckling have been presented
in an analytical form. The safety domains of principal parameters were obtained and
presented in the paper. This result can be used in the engineering practice for tuning the
parameters of mechanical systems to optimize the efficiency of production processes.

In the case of the considered multilayered composite we realized the technique of aver-
aging of thermomechanical properties of different layers and found the effective composite
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Figure 2: Cross-sectional of the panel modelled as a layered continuous composite.

characteristics. This has been done using basic material properties and taking into ac-
count that there is no sliding and discrepancies between layers. Using the found averaged
effective modulus including combined effective characteristics the required values were ob-
tained and used in the final formulas for critical velocities and temperatures of a moving
composite.
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