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Abstract. A variational micro-mechanical model is proposed to reproduce the complex
response of fiber-reinforced concretes to tensile loadings. The composite is described as
a mixture where two phases are combined: a brittle phase, corresponding to the cemen-
titious matrix, and an elasto-plastic phase, describing the ductile contribution of fibers.
The model is formulated in the simple one-dimensional setting of a tensile bar, and im-
plemented in a finite element code. Simulations of tensile tests are performed, which
capture the different stages of the evolution typically observed in experiments: the stress-
hardening phase of microcracking, and the subsequent stage of stress-softening in which a
macro-crack opens, leading to the sample failure. Simulations also reproduce the stiffness
degradation and the occurrence of residual strains observed when samples are unloaded.

1 INTRODUCTION

The mechanical properties of standard concrete significantly improve when fibers,
made of steel or plastic, are distributed into the cementitious matrix. In particular,
fibers contribute to sustain tensile loadings and to diffuse stresses, thus largely increasing
the ultimate strength and ductility. Focusing on the tensile behavior, for which signifi-
cant mechanical enhancements are achieved [1, 2, 3], High Performance Fiber Reinforced
Concretes (HPFRC) typically experience an initial elastic strain phase, followed by a
non-linear stress-hardening process of diffuse micro-cracking, and a final stress-softening
stage, corresponding to strain localization and macro-crack opening. These three phases
are clearly illustrated in Fig. 1.
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A variational model was developed in [4] to reproduce the complex mechanical response
of HPFRCs. By incorporating a damage parameter, it interprets micro-cracking as dif-
fuse damaging, and macro-crack opening as damage localization. Instead, in this work,
a variational micro-mechanical model is proposed where the mechanics of cementitious
matrix and fibers is described by two material phases accounting for brittle and ductile
elasto-plastic responses. In addition to the elastic strain energy, which is assumed to be
quadratic with respect to the elastic strain, as in linear elasticity, specific energies are
assigned to the two materials: i. damage energy is assigned to the brittle material, which
depends on a scalar damage parameter, and accounts for a local and a non-local contribu-
tion that are typically considered in phase-field models of fracture [5]; ii. a plastic energy
is considered for the ductile phase, which is similar to that proposed in [6, 7, 8]. It is
sum of a local non-convex energy, which has a dissipative nature, and a non-local term,
depending on the plastic strain gradient.

Damage and plasticity are considered separately within each component of the mix-
ture, differently than [9, 10], where damage and plasticity are combined within the same
material. The two phases are linked through linear elastic diffuse interface, which con-
tributes to couple the problems of each phases. The structure of the resulting formulation
is similar to that proposed in [11] for the failure study of hybrid laminates. The evolution
problem is formulated as an incremental energy minimum problem, where the unknowns
are the rates of displacements and internal variables (damage and plastic strain fields)
associated to the two phases.

The proposed model is capable to reproduce the progressive formation of micro-cracks
within the brittle material phase representing the cementitious matrix, as observed in
experiments, thus providing a more realistic description of the micro-cracking process
than the model in [4]. The macro-crack growth, which concludes the deformation process,
is described by progressive plastic strain localization in the ductile material. The model
also improves the description of the unloading process, since it accounts for stiffness
degradation, which produces a reduction of the slope of the unloading stress-strain curve,
and plastic dissipation, which introduces residual strains, according to the experimental
evidences (see the unloading branch of Fig. 1).

In the present paper, the model is formulated in the simple one-dimensional setting
of a tensile bar, and it is numerically implemented in a finite element code. Numerical
simulations are performed and results are discussed, highlighting the predictive abilities
of the model in capturing the main feature of the evolution process observed in tensile
tests.

The paper is organized as follows. In Sect. 2, the basic experimental evidences of tensile
tests on HPFRC samples are presented. The model is formulated in Sect. 3 and numerical
results are discussed in Sect. 4. Conclusions and perspectives for future researches are
drawn in Sect. 5.
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Figure 1: Experimental stress-strain curve of tensile tests on dog-bone shaped samples (from [2]).

2 TENSILE RESPONSE OF FIBER-REINFORCED CONCRETE

To give an insight into the enhanced mechanical performances of HPFRC, typical
stress-strain curves obtained from tensile tests on dog-bone specimens are drawn in Fig.
1. They are taken from [2], where several experiments are performed, considering different
types of fibers and different fiber volume fractions. The curves of Fig. 1 result from tests
on samples reinforced with straight fibers of 13 mm in length, and volume fraction equal
to 2.5 Vol.%.

Each curve exhibits three different peculiar branches, labeled by different numbers,
which are associated to different stages of evolution. First, the sample stretches elasti-
cally, corresponding to the initial straight stress-strain curve 1, which terminates when the
stress reaches the limit value of about 12MPa. From this point on, the bar experiences a
process of micro-cracking, where multiple cracks progressively forms in the cementitious
matrix, almost uniformly distributed through the bar. For the tests represented in Fig. 1,
the crack width ranges between 5 and 20µm, and crack spacing is about 4.2mm. This
multi-cracking phase occurs in regime of stress-hardening, and corresponds to the increas-
ing sawtooth branch of the stress-strain curve 2. Stress drops correspond to micro-cracks
opening. It is worth noting that such a hardening stage, totally absent in common con-
cretes, is due to the bridging effect of the fibers across the micro-cracks. Moreover, such
a bridging effect is the key mechanism that significantly enhance the material ductility.
The stress-softening stage 3 concludes the evolution process leading to the sample failure.
More precisely, during the softening stage, the weakest micro-crack evolves into a macro-
crack, where the bridging fibers progressively pull out and break, whereas the remaining
micro-cracks elastically unload without the occurrence of further matrix cracks.

Unloading branches are plotted in Fig. 1 as well. They have smaller slope than the
initial elastic curve and unveils the presence of residual strains. The smaller slope testifies
a stiffness degradation related to the formation of micro-cracks in the cementitious matrix
whereas residual strains are related to the evolution of plasticity both during the hardening
and softening stages.
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3 VARIATIONAL MODEL

In this section, the variational model is presented in the simple one-dimensional setting.
A bar of length l is considered, subjected to the stretching displacement ε(t)l (with ε the
assigned strain and t a time-like evolution parameter). Positions in the longitudinal axis
are referred with x ∈ (0, l). A geometrical scheme of the problem is drawn in Fig. 2. The
bar is a mixture of two phases, a brittle phase (phase 1) and a ductile plastic phase (phase
2), which represent the cementitious matrix and fibers (combined with large aggregates),
respectively. The volume fractions per unit length of the two phases are v1 and v2 = 1−v1.
The area per unit length of the interface between the two phases is a.

In the following, indices 1 and 2 are used to refer to phase 1 and 2. Furthermore, when
necessary, a subscript t is used to indicate dependence on the time evolution parameter t,
called from now on simply time for brevity. With regard to derivatives, a prime and a dot
indicate derivatives with respect to x and t, respectively, i.e., given a function v = vt(x),
v′ = dv/dx, and v̇ = dv/dt.

3.1 Modeling assumptions

Here, the basic modeling assumptions are stated. The state variables are the displace-
ments u1(x) and u2(x) of the two phases, the damage variable α(x) defined in phase 1,
and the plastic strain p(x) defined in phase 2. The damage variable α ranges between 0
and 1: α = 0 means sound material, and α = 1 means fully damaged material, i.e. a
crack. The irreversibility condition

α̇ ≥ 0 (1)

is imposed in order to prevent material self-healing.
The internal energy of the bar is

E(u1, u2, α, p) =

∫ l

0

v1

(

1

2
(1− α)2E1u

′2
1 + w1α +

1

2
w1l

2
1α

′2

)

dx+

+

∫ l

0

v2

(

1

2
E2(u

′

2 − p)2 + w2(p) +
1

2
Al22p

′2

)

dx+

+

∫ l

0

a
1

2
ka(u1 − u2)

2 dx.

(2)

The first integral represents the internal energy of phase 1. Its expression originates from
standard phase-field models, where the damage energy w1α is a linear function of α in
order to account for an initial elastic stage (see [12]). The second integral is the internal
energy of phase 2, which is analogous to the energies considered in the nonlocal plasticity
models of [6, 7]. The plastic energy w2(p) is a strictly increasing function, such that
w2(0) = 0 and w′

2(0) > 0. Moreover, we suppose that w2 is totally dissipated, that is

ẇ2(p) = w′

2(p)ṗ ≥ 0, (3)

which, since w′

2(p) > 0, reduces to
ṗ ≥ 0. (4)
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In classical gradient plasticity [13], the plastic energy depends on the cumulated plastic
strain, which, in the one-dimensional tensile contest considered here, coincides with the
irreversible plastic strain p. Parameters l1 and l2 are internal lengths of phases 1 and 2,
aiming at governing the respective localization widths. Finally, the third integral in (2) is
the linear elastic interface energy as a function of the relative displacements linking the
two phases.

According to the scheme of Fig. 2, the boundary conditions are

u1(0) = u2(0) = 0, u1(l) = u2(l) = ε(t)l,
α(0) = α(l) = 0, p(0) = p(l) = 0.

(5)

Damage and plastic strain are assigned null at the boundaries in order to keep inelastic
phenomena away from the bar endpoints, and, thus, to reproduce results usually observed
in experiments. Indeed, in the tensile tests described in Sect. 2, specimens are enlarged
at the end sections (bone-shaped samples) to avoid inelastic phenomena, and eventually
premature failure at the gripping regions.

Stresses in the two phases, and the interface shear stress are

σ1 = (1− α)2E1u
′

1, σ2 = E2(u
′

2 − p), τa = ka(u1 − u2), (6)

and they are obtained by derivation of the internal energy densities and interface energy
in (2) with respect to the observable variables u′

1, u
′

2 and the slip u1 − u2.

3.2 Equilibrium

Equilibrium equations are obtained by requiring that the energy first variation

δE(u1, u2, α, p)[z1, z2, β, q] =

∫ l

0

{

(aτa − v1σ
′

1) z1 + (−(1 − α)E1u
′2
1 + w1 − w1l

2
1α

′′)β
}

dx+

+

∫ l

0

{

(−v2σ
′

2 − aτa) z2 + (−σ2 + w′

2(p)− Al22p
′′)q

}

dx

+
[

v1
(

σ1z1 + w1l
2
1α

′β
)

+ v2
(

σ2z2 + Al22p
′q
)]l

0
,

(7)
be non-negative for any perturbation (z1, z2, β, q), such that β ≥ 0 and q ≥ 0. The
resulting equations are:

v1σ
′

1 − aτa = 0, v2σ
′

2 + aτa = 0, balance equations,
f1(u1, α) = −(1 − α)E1u

′2
1 + w1 − w1l

2
1α

′′ ≥ 0, damage yield condition,
f2(u2, p) = w′

2(p)− Al22p
′′ − σ2 ≥ 0 plastic yield condition.

(8)

By using (6)1, inequality (8)3 turns into

σ1 ≤
√

E1(1− α)3(w1 − w1l21α
′′) = σy1(α), (9)

with σy1(α) the damage yield stress. The limit elastic stress

σe1 = σy1(0) =
√

E1w1, (10)
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is the maximum stress that phase 1 can sustain before damaging. Analogously, (8)4
rewrites

σ2 ≤ w′

2(p)−Al22p
′′ = σy2(p), (11)

with σy2 the plastic yield stress, and, in this case, the limit elastic stress is

σe2 = σy2(0) = w′

2(0). (12)

Boundary terms in (7) are null because of the boundary conditions (5).

3.3 Evolution

Time t is discretized into intervals of length τ , and, within each time step t 7→ t + τ ,
the evolution is governed by the incremental energy minimization problem described in
the following.

At time t + τ , the problem unknowns are approximated by the linear approximations

uj,t+τ = uj,t + τ u̇j,t, j = 1, 2, αt+τ = αt + τα̇t, pt+τ = pt + τ ṗt, (13)

and the energy (2) is developed up to the second order as follows

E (u1,t+τ , u2,t+τ , αt+τ , pt+τ ) ≃ E (u1,t, u2,t, αt, pt) + τ Ė (u1,t, u2,t, αt, pt, u̇1,t, u̇2,t, α̇t, ṗt) +
1

2
τ 2Ë (u1,t, u2,t, αt, pt, u̇1,t, u̇2,t, α̇t, ṗt) .

(14)
We suppose that solution (u1,t, u2,t, αt, pt) at instant t is known, and we look for the
unknown rates (u̇1,t, u̇1,t, α̇t, ṗt) that minimize (14) under the constraints (1) and (4), and
with the boundary conditions

u̇(0) = 0, u̇(l) = ṫl α̇(0) = α̇(l) = 0, ṗ(0) = ṗ(l) = 0. (15)

Solution at the instant t + τ is determine from the approximated expression (13). Since
E (u1,t, u2,t, αt, pt) is constant, (14) reduces to

J (u̇1,t, u̇2,t, α̇t, ṗt) = Ė (u1,t, u2,t, αt, pt, u̇1,t, u̇2,t, α̇t, ṗt)+
1

2
τ Ë (u1,t, u2,t, αt, pt, u̇1,t, u̇2,t, α̇t, ṗt) ,

(16)
where Ė and Ë have the explicit expressions

Ė =

∫ l

0

{v1(1− α)2E1u
′

1u̇
′

1 + v2E2(u
′

2 − p)u̇′

2 + aτa(u̇1 − u̇2)+

+v1[(−(1− α)E1u
′2
1 + w1)α̇+ w1l

2
1α

′α̇′] + v2[(−E2(u
′

2 − p) + w′

2(p))ṗ+ Al22p
′ṗ′]} dx

Ë =

∫ l

0

{v1(1− α)2E1u̇
′2
1 + v2E2u̇

′2
2 + aka(u̇1 − u̇2)

2 − 4v1(1− α)E1u
′

1u̇
′

1α̇+

−2v2E2u̇
′

2ṗ+ v1(E1u
′2
1 α̇ + w1l

2
1α̇

′2) + v2(E2ṗ
2 + w′′

2(p)ṗ
2 + Al22ṗ

′2)}dx,
(17)
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and the minimum problem writes

(u̇1,t, u̇2,t, α̇t, ṗt) = argmin {J (u̇1, u̇2, α̇, ṗ), α̇ ≥ 0, ṗ ≥ 0, + b.c.} . (18)

Necessary condition for a minimum is that

δJ (u̇1,t, u̇2,t, α̇t, ṗt) [δu̇1, δu̇2, δα̇, δṗ] ≥ 0, (19)

for any δu̇1, δu̇2, δα̇ and δṗ which are null at the endpoints, and satisfy the constraints

α̇t + δα̇ ≥ 0, , ṗt + δṗ ≥ 0, (20)

which leads to the following evolution equations:
(i) stress balance equations

v1σ̇
′

1,t − aτ̇a,t = 0, v2σ̇
′

2,t + aτ̇a,t = 0, (21)

(ii) damage Kuhn-Tucker relations

α̇t ≥ 0, f1,t + τ ḟ1,t ≥ 0, α̇t(f1,t + τ ḟ1,t) = 0, (22)

(iii) plastic Kuhn-Tucker relations

ṗt ≥ 0, f2,t + τ ḟ2,t ≥ 0, ṗt(f2,t + τ ḟ2,t) = 0, (23)

where f1 and f2 are defined in (8)3,4. Relations (22) and (23) are consistency conditions
that state that damage and plastic strain can increase only if the corresponding yield
functions maintain equal to zero. A consequence of assumptions (13) and (14) is that the
evolution problems (22) and (23) linearly depend on τ , and the accuracy of the evolution
problem increases if smaller and smaller values of τ are assigned. In the numerical simu-
lations, accuracy is improved by implementing a iterative minimization algorithm at each
time step.

4 SIMULATIONS

At each time step, the minimum problem (18) is solved numerically by finite elements.
An alternate minimization algorithm is implemented, which consists in minimizing the
functional J with respect to each one of the variables (u̇1, u̇2), α̇ and ṗ, keeping fixed all the
others. The minimum problems with respect to α̇ and ṗ are solved by using a constrained
quadratic programming routine, in order to enforce the irreversibility conditions (1) and
(4), whereas minimization with respect to (u̇1, u̇2) results in a stationarity linear equation.
Alternate minimization is iterated until convergence.

4.1 Parameters setting

Since we intend to reproduce the experimental response of Fig. 1 taken from [2], values
of many parameters of the model are fixed equal to those indicated in [2]. The parameters
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which do not have corresponding experimental values are fixed in order to get the best
curve fitting. The problem geometry is schematized in Fig. 2(a), where the length l = 76
mm is that of the samples tested in [2]. We assign v1 = 0.965, v2 = 0.035 and a = 1. For
the Young’s moduli, we assume E1 = 56GPa and E2 = 210GPa. The damage coefficient
w1 is determined from (10), by assigning σe1 = 11 MPa. A small perturbation has been
introduced in the values of σe1 in order to recreate the heterogeneity always present in
real materials. The internal length l1 is related to the width of the process zone h1, here
chosen as h1 = 0.1mm, by the relation l1 = h1/(2

√
2) deduced in [12]. The tentative

value ka = 4000 N/mm2 is assigned to the interface elastic coefficient. The plastic energy
w2(p) is chosen as simple as possible. A tentative quadratic convex-concave function is
assumed, whose graph is plotted in Fig. 2(b). Notice that w′

2(0) is the plastic yield
value σe2, according to formula (12), which is assumed equal to 55 MPa. The nonlocal
coefficient of the plastic energy is Al22 = 3.8 Nmm2.
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Figure 2: (a) Geometrical scheme of the bar. (b) Plastic energy graph.

4.2 Numerical results

The resulting numerical stress-strain curve is plotted in Fig. 3. The very same three
branches of the experimental curve of Fig. 1 are observed, which are the initial linearly
elastic curve, the sawtooth branch associated to the stress hardening micro-cracking evo-
lution, and the final softening branch associated to a macro-crack opening. Each drop of
the stress-hardening curve corresponds to the opening of 1 micro-crack (2 contemporary
micro-cracks for the deepest drops). Curve jumps are deeper than those of the experimen-
tal curves of Fig. 1 since, in the proposed one-dimensional formulation, each crack opens
through the whole cross-section of the sample, while many cracks of small area form in in
real samples. As a result, the experimental response curves present more drops of smaller
amplitude.

The progressive formation of micro-cracks is described in Fig. 4. White lines are used
to show the position of matrix (phase 1) cracks within the bar at different values of ε.
The distribution of cracks is quite periodic through the bar, with increasing frequency
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during the evolution. New cracks open in between adjacent preexisting cracks that have
the largest spacing.

Fig. 5 illustrates the mechanism of crack opening in terms of stresses. In it, profiles of
σ1 and σ2 are drawn at different values of ε in the evolution stages of second crack opening
(Fig. 5a) and tenth and eleventh cracks opening (Fig. 5b). At crack points, σ1 is null, and
σ2 attains the maximum value. The bell-shaped profiles of σ1 in between adjacent cracks
growth as ε increases, and, when the midpoint of one bell (the largest one) reaches the
limit value σe1 of formula (10), represented by the red line in Fig. 5, a new crack forms
therein. The stress σ1 jumps to zero in correspondence of the new crack, and it globally
reduces in the whole bar, as shown by the blue profiles.

Profiles of u1, u2 and p at different values of ε are drawn in Fig. 6. While u1 tends to
be discontinuous at cracks points, u2 remains smoother (continuous). Indeed, the elasto-
plastic phase 2 does not break, but it undergoes plastic strains in small zones crossing
the cracks (see the profiles of p in Fig. 6). Fig. 6d draws a picture of what happens
in the softening regime: plastic strain localizes and considerably grows in a small region
in the middle of the bar. This leads to a large jump of displacements u1 and u2, which
reproduces macro-crack opening. In the zone where macro-crack evolves, the plastic strain
attains values larger than p = 0.35 %, thus belonging to the concave branch of the plastic
energy of Fig. 2b.

Finally, we notice that the model also gives an accurate description of the unloading
process, which is purely elastic. The unloading curve of Fig. 3 is very similar to the
experimental curve of Fig. 1, capturing both stiffness degradation due to micro-cracking,
and residual plastic strains, because of the dissipative nature of the plastic energy of phase
2.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

s [MPa]

e [%]

Figure 3: Numerical σ-ε curve.

5 CONCLUSIONS

A variational bi-phase model has been presented aimed at describing the rich mechan-
ical response of high-performance fiber-reinforced concretes subjected to tensile loadings.
The model accounts for a mixture of a brittle phase and an elasto-plastic phase, which
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Figure 4: Sequence of microcrack openings for increasing ε. The black crack at ε = 0.34% is the
macro-crack that leads to the bar failure.

represent the cementitious matrix and the fibers, respectively. The formulation has been
conducted in the simple one dimensional case of a tensile bar, and equilibrium and evo-
lution laws have been variationally deduced and numerically implemented. Numerical
simulations have shown the ability of the model in capturing the peculiar features of the
tensile failure processes observed in experiments, such as micro-cracking, ductile macro-
crack opening, elastic unloading, stiffness degradation, plastic strains accumulation.

The study is open to many developments, which will be addressed in future researches.
We point out three lines of research, which are already object of study: 1. extension of
the model to multi-dimensional frameworks; 2. application of the model to the design of
real objects made of HPFRC, as in [14], where a table prototype totally made of HPFRC
was studied; 3. analysis of the effects of heterogeneous distribution of fibers within the
cementitious matrix on the mechanical performances.
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