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Abstract. In prior work, we have presented novel governing operators with homogeneous
boundary conditions (BC). Here, we extend the construction to inhomogeneous BC. The
construction of the operators is inspired by peridynamics. They agree with the original
peridynamics operator in the bulk of the domain and simultaneously enforce local Dirichlet
and Neumann BC. We present exact solutions and utilize the resulting error to verify
numerical experiments.

1 INTRODUCTION

We consider the following nonlocal (NL) wave equations with inhomogeneous local
Dirichlet and local Neumann boundary condition (BC), respectively:

uDtt(x, t) +MDu
D(x, t) = bD(x, t), (x, t) ∈ Ω× (0, T ), (1.1a)

uD(±1, t) = αD
±(t), (1.1b)

uD(x, 0) = φD(x), (1.1c)

uDt (x, 0) = ψD(x), (1.1d)

uNtt(x, t) +MNu
N(x, t) = bN(x, t), (x, t) ∈ Ω× (0, T ), (1.2a)

uNx(±1, t) = αN
±(t), (1.2b)

uN(x, 0) = φN(x), (1.2c)

uNt (x, 0) = ψN(x), (1.2d)

on the domain Ω := (−1, 1) for some T > 0. The problems (1.1) and (1.2) fall into the class
of initial boundary value problems. We have studied the above NL wave equations with
homogeneous local BC in prior work [1, 2, 4]. The main purpose of this study is to extend
the treatment to inhomogeneous BC. A more comprehensive study is in preparation.
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In earlier work, we proved that the NL diffusion operator is a function of the classical
operator [7]. This observation opened a gateway to incorporate local BC to NL problems
on bounded domains. The main tool we used to define the novel governing operators was
functional calculus, in which we replaced the classical governing operator by a suitable
function of it. We provided the operator-theoretic treatment of (1.1) and (1.2) by resorting
to an abstract version [2, 7]. More precisely, we utilized an operator-differential equation
in L2(Ω) in the form

d2uBC

dt2
(t) +MBCu

BC(t) = bBC(t),

uBC(0) = φBC,

duBC

dt
(0) = ψBC,

(1.3)

where BC ∈ {D, N} and D and N denote the Dirichlet and Neumann BC. Here the R-
valued functions uBC = uBC(x, t), bBC = bBC(x, t) : Ω × [0, T ] → R are associated with
their L2(Ω)-valued counterparts uBC = uBC(t), bBC = bBC(t) : [0, T ] → L2(Ω) through
[uBC(t)](x) := uBC(x, t). If the forcing function

bD ∈ C0([0, T ], L2(Ω)) and bN ∈ C1([0, T ], L2(Ω))

we proved that the solution to (1.3) [2, Thm. 8] [7, Thm. 1]

uD ∈ C2([0, T ], L2(Ω)) and uN ∈ C3([0, T ], L2(Ω)). (1.4)

The spatial and temporal behaviors are different. For instance by bD ∈ C0([0, T ], L2(Ω)),
we mainly mean a continuous function in time variable and a square integrable function
in space variable. Namely, bD(x, ·) ∈ C0([0, T ]) for x ∈ Ω and bD(·, t) ∈ L2(Ω) for t ∈ [0, T ].

As pointed out in (1.4), the solutions uD and uN to (1.3), possess C2
(
[0, T ], L2(Ω)

)
and C3

(
[0, T ], L2(Ω)

)
regularity, respectively. In the x-variable, we use the density of

C2(Ω) in L2(Ω) and the density of C3(Ω) in L2(Ω) for the Dirichlet and Neumann prob-
lems, respectively. When we construct the computational framework and identify the
relations between the forcing function, boundary and initial conditions, the space cho-
sen is C2

(
[0, T ], C2(Ω)

)
and C3

(
[0, T ], C3(Ω)

)
for the Dirichlet and Neumann problems,

respectively. On the other hand, we have the isomorphism

Cs
(
[0, T ], Cs(Ω)

) ∼= Cs(Ω× [0, T ]), s = 2, 3.

Consequently, the main space in which low level construction takes place is Cs(Ω× [0, T ]);
see Sec. 3.

2 THE CONVOLUTION AND THE GOVERNING OPERATORS

In this section, we explain the key steps in construction of the governing operatorMBC.
We observe that the peridynamics governing operator contains a convolution operator.
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First, we construct the convolution operators Ca and Cp with antiperiodic and periodic
BC, respectively, using the eigenfunctions

eak(x) :=
1√
2
eiπ(k+ 1

2
)x, k ∈ N, and epk(x) :=

1√
2
eiπkx, k ∈ N,

of the classical operator Aa and Ap in which the BC information is already encoded. For
a given kernel function C ∈ L2(Ω), the convolution operator, for u ∈ L2(Ω), is defined as

CBCu(x) :=
√

2
∑
k∈N

〈eBCk |C〉 〈eBCk |u〉 eBCk (x), BC ∈ {a, p},

where 〈·|·〉 denotes the L2(Ω) inner product. The operators CBC turn out to be bounded
functions of the classical operator ABC, thereby maintaining the connection to ABC.

In this study, we consider only the operators MD and MN. Hence, in the rest of the
discussion, we set BC ∈ {D, N}. The operatorMBC is constructed using functional calculus
on the classical self-adjoint operator ABC. We are in search of a suitable regulating function
fBC : σ(ABC)→ R that would connect the NL operator MBC to ABC, i.e., MBC = fBC(ABC).
We want this regulating function to be bounded so that the end productMBC is a bounded
operator. Eventually, we end up with the NL governing operator MBC that is densely
defined in L2(Ω) with a domain that encodes the prescribed BC, bounded, and self-
adjoint. We can therefore conclude that the operatorMBC has a unique bounded extension
to L2(Ω). Consequently, we find that a construction involving densely defined operators
provides a suitable framework for treating local BC in the NL wave equation.

We want to elaborate on the choice of fBC. Since we want keep a close proximity to
peridynamics, we want fBC to be inspired by the theory of peridynamics. In prior work,
we discovered that the peridynamics governing operator for the case Ω = R is a function
of the classical operator [7]. We reuse that regulating function for the case of Ω = (−1, 1).
We define ND := N \ {0} and NN := N. Our choice of regulating functions are

fBC : σ(ABC)→ R, fBC(λ
BC
k ) = 〈1|C〉 −

√
2

{
〈epk/2|C〉 if k ∈ NBC is even,

〈ea(k−1)/2|C〉 if k ∈ NBC is odd.

Utilizing the convolution operators Ca and Cp obtained by functional calculus on Aa and
Ap, respectively, defining c := 〈1|C〉, we proved in [1, 3] that

fD(AD)u
D =

(
c− CaPe − CpPo

)
uD =MDu

D,

fN(AN)u
N =

(
c− CpPe − CaPo

)
uN =MNu

N,

where we denote the orthogonal projections that give the even and odd parts, respectively,
by Pe, Po : L2(Ω) → L2(Ω), whose definitions are

Peu(x) :=
u(x) + u(−x)

2
, Pou(x) :=

u(x)− u(−x)

2
.
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The crucial step in the construction ofMBC is the application of the spectral theorem for
bounded operators. Namely, for uBC =

∑
k 〈eBCk |uBC〉 eBCk , we have

MBCu
BC = fBC(ABC)u

BC =
∑
k∈NBC

fBC(λ
BC
k ) 〈eBCk |uBC〉 eBCk . (2.1)

For an extended discussion on the treatment of general NL problems using functional
calculus, see [5].

Integral representation of the series (2.1) is more convenient for implementation. We
presented such representations in [1] and the governing operators take the form(

MBC − c
)
uBC(x, t) = −

∫
Ω

KBC(x, x
′)uBC(x′, t) dx′,

KD(x, x
′) :=

1

2

{[
Ĉa(x

′ − x) + Ĉa(x
′ + x)

]
+
[
Ĉp(x

′ − x)− Ĉp(x
′ + x)

]}
,

KN(x, x
′) :=

1

2

{[
Ĉp(x

′ − x) + Ĉp(x
′ + x)

]
+
[
Ĉa(x

′ − x)− Ĉa(x
′ + x)

]}
,

where we denote the periodic and antiperiodic extensions of C(x) from (−1, 1) to (−2, 2),
respectively, as follows

Ĉp(x) :=


C(x+ 2), x ∈ (−2,−1),
C(x), x ∈ (−1, 1),
C(x− 2), x ∈ (1, 2),

Ĉa(x) :=


−C(x+ 2), x ∈ (−2,−1),

C(x), x ∈ (−1, 1),

−C(x− 2), x ∈ (1, 2).

3 FORCING FUNCTION, BC, AND INITIAL VALUE RELATIONSHIPS

In order to find the suitable forcing function that enforces the prescribed BC, we need to
identify the governing ordinary differential equation (ODE) on the boundary. We assume
that uD ∈ C2(Ω× [0, T ]), uN ∈ C3(Ω× [0, T ]), and bD ∈ C0(Ω× [0, T ]), bN ∈ C1(Ω× [0, T ]).
On the boundary, we denote the displacement, the stress and the forcing functions by

uD±(t) := lim
x→±1

uD(x, t) and bD±(t) := lim
x→±1

bD(x, t)

uNx,±(t) := lim
x→±1

∂uN

∂x
(x, t) and bNx,±(t) := lim

x→±1

∂bN

∂x
(x, t).

In order to investigate the behavior of the solution on the boundary, first we study
the action of the governing operator MBC on the boundary. By the Lebesgue Dominated
Convergence Theorem and the design of the kernel functions KBC(x, x

′), we have

lim
x→±1

(
MD − c

)
uD(x, t) = − lim

x→±1

∫
Ω

KD(x, x
′)uD(x′, t) dx′

= −
∫

Ω

lim
x→±1

KD(x, x
′)uD(x′, t) dx′ = 0,

lim
x→±1

∂

∂x

(
MN − c

)
uN(x, t) = − lim

x→±1

∂

∂x

∫
Ω

KN(x, x
′)uN(x′, t) dx′

= −
∫

Ω

lim
x→±1

∂KN

∂x
(x, x′)uN(x′, t) dx′ = 0.

4
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We see that the governing equations (1.1a) and (1.2a) under the action of limx→±1 and
limx→±1

∂
∂x

, respectively, reduce to the following ODE:

d2uD±
dt2

(t) + cuD±(t) = bD±(t), t ∈ (0, T ), (3.1)

d2uNx,±
dt2

(t) + cuNx,±(t) = bNx,±(t), t ∈ (0, T ). (3.2)

In order to obtain a unique solution to (3.1) and (3.2), we need to prescribe the two initial

values uD±(0) and
duD±
dt

(0) and uNx,±(0) and
duNx,±

dt
(0), respectively.

By taking limx→±1 in (1.1c) and (1.1d) and limx→±1
∂
∂x

in (1.2c) and (1.2d), we imme-
diately identify the initial displacement and velocity for the Dirichlet problem and initial
stress and stress rate for the Neumann problem as

uD±(0) = φD(±1) and
duD±
dt

(0) = ψD(±1), (3.3)

uNx,±(0) = φ′N(±1) and
duNx,±

dt
(0) = ψ′N(±1). (3.4)

Putting together (3.1) and (3.3), we arrive at the initial value problem (IVP) on the
boundary for the Dirichlet problem:

d2uD±
dt2

(t) + cuD±(t) = bD±(t), t ∈ (0, T ),

uD±(0) = φD(±1) and
duD±
dt

(0) = ψ(±1).

(3.5)

Similarly, putting (3.2) and (3.4) together, we arrive at the IVP on the boundary for the
Neumann problem:

d2uNx,±
dt2

(t) + cuNx,±(t) = bNx,±(t), t ∈ (0, T )

uNx,±(0) = φ′N(±1) and
duNx,±

dt
(0) = ψ′N(±1).

(3.6)

On the other hand, the BC (1.1b) and (1.2b) demand a solution from (3.5) and (3.6)
that are equal to αD

±(t) and αN
±(t), respectively. Hence, we identify the initial displacement

and velocity, for the Dirichlet problem and initial stress and initial stress rate, for the
Neumann problem, as well as the corresponding forcing functions. When the following
choices are made,

Dirichlet: bD±(t) =
d2αD

±

dt2
(t) + cαD

±(t), φD(±1) = αD
±(0), ψD(±1) =

dαD
±

dt
(0), (3.7)

Neumann: bNx,±(t) =
d2αN

±

dt2
(t) + cαN

±(t), φ′N(±1) = αN
±(0), ψ′N(±1) =

dαN
±

dt
(0), (3.8)

5
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the IVP (3.5) for the Dirichlet problem takes the form

d2uD±
dt2

(t) + cuD±(t) =
d2αD

±

dt2
(t) + cαD

±(t), t ∈ (0, T )

uD±(0) = αD
±(0) and

duD±
dt

(0) =
dαD
±

dt
(0).

Similarly, the IVP (3.6) for the Neumann problem takes the form

d2uNx,±
dt2

(t) + cuNx,±(t) =
d2αN

±

dt2
(t) + cαN

±(t), t ∈ (0, T )

uNx,±(0) = αN
±(0) and

duNx,±
dt

(0) =
dαN
±

dt
(0).

Consequently, we guarantee that the solutions to (3.5) and (3.6) are exactly αD
±(t) and

αN
±(t), respectively. As seen above, the way we enforce inhomogeneous local BC is by the

use of a forcing function on the boundary only (not in the interior of Ω). This is a major
difference between enforcing local and nonlocal BC.

Remark 3.1 Since uD ∈ C2(Ω × [0, T ]), the choices (3.7)2 and (3.7)3 correspond to the
continuity of uD and uDt , respectively, at the corner points (±1, 0). More precisely, they
are implications for the following interchange of limits.

φD(±1) = lim
x→±1

lim
t→0

uD(x, t) = lim
t→0

lim
x→±1

uD(x, t) = αD
±(0)

ψD(±1) = lim
x→±1

lim
t→0

uDt (x, t) = lim
t→0

lim
x→±1

uDt (x, t) =
dαD
±

dt
(0).

Similarly, since uN ∈ C3(Ω × [0, T ]), the choices (3.8)2 and (3.8)3 correspond to the con-
tinuity of uNx and uDxt, respectively, at the corner points (±1, 0).

φ′N(±1) = lim
x→±1

lim
t→0

∂uN

∂x
(x, t) = lim

t→0
lim
x→±1

∂uN

∂x
(x, t) = αN

±(0)

ψ′N(±1) = lim
x→±1

lim
t→0

∂uNt
∂x

(x, t) = lim
t→0

lim
x→±1

∂uNt
∂x

(x, t) =
dαN
±

dt
(0).

4 EXACT SOLUTIONS WITH HOMOGENEOUS BC

Thanks to functional calculus, it is possible to find exact solutions to (1.1) and (1.2).
The expressions for the solution to (1.1) and (1.2) are given as [2, 7]

uBC(x, t) = cos
(
t
√
MBC

)
φBC(x) +

sin
(
t
√
MBC

)
√
MBC

ψBC(x)+∫ t

0

sin
(
(t− τ)

√
MBC

)
√
MBC

bBC(x, τ) dτ. (4.1)

6
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Using the Hilbert basis and the spectral theorem for bounded operators, we can turn
expression (4.1) into the following series representation.

uBC(x, t) =
∑
k∈NBC

cos
(
t
√
fBC(λBCk )

)
〈eBCk |φBC〉 eBCk (x) +

∑
k∈NBC

sin
(
t
√
fBC(λBCk )

)√
fBC(λBCk )

〈eBCk |ψBC〉 eBCk (x)+

∑
k∈NBC

[ ∫ t

0

sin
(
(t− τ)

√
fBC(λBCk )

)√
fBC(λBCk )

〈eBCk |bBC(τ)〉 dτ
]
eBCk (x).

We collapse the series by using the orthonormality of eBCk . For instance, the choice of

bBC(x, t) ≡ 0, φBC(x) = eBCm (x), ψBC(x) ≡ 0, (4.2)

for some m ∈ N \ {0}, leads to

uBC(x, t) = cos
(
t
√
fBC(λBCm )

)
eBCm (x).

4.1 Classical Exact Solutions with Homogeneous BC

We also study the local analogs of the problems (1.1) and (1.2). We consider the
classical wave equation with homogeneous Dirichlet and Neumann BC with the same
choice given in (4.2)

vBCtt (x, t)− 4

π2
vBCxx(x, t) = 0, (x, t) ∈ Ω× (0, T ),

vD(±1, t) = 0 or vNx(±1, t) = 0,

vBC(x, 0) = eBCm (x),

vBCt (x, 0) = 0,

(4.3)

for some m ∈ N \ {0}. It is possible to obtain a closed form solution using d’Alembert’s
formula together with the method of images or reflections. After some algebra, we obtain

vBC(x, t) = cos
(
t
√
m2
)
eBCm (x).

Since the classical governing equations (4.3) contain the classical operators ABC, the regu-
lating function is nothing but the identity function. Using the expression of the spectrum
σ(ABC) = {k2 : k ∈ NBC} , we have

f classi
BC (λBCk ) = λBCk = k2, k ∈ NBC.

Even though f classi
BC : σ(ABC) → R is not a bounded function, the solution expression

obtained from the formula (4.1) still captures the expression obtained from d’Alembert’s
formula. This is due to the instance of the spectral theorem for Sturm-Liouville operators.

7
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5 EXACT SOLUTIONS WITH INHOMOGENEOUS BC

We treat inhomogeneous BC by the method of shifting the data. We define a shift
function GBC(x, t) that satisfies the BC:

GD(±1, t) = αD
±(t) and GN

x(±1, t) = αN
±(t) (5.1)

GBC(x, t) can be any function that satisfies (5.1). A practical choice is

GD(x, t) =
1− x

2
αD
−(t) +

1 + x

2
αD

+(t) (5.2)

GN(x, t) =
(1− x)2

4
αN
−(t) +

(1 + x)2

4
αN

+(t). (5.3)

We assume that the boundary data have the following regularity

αD
± ∈ C2([0, T ]) and αN

± ∈ C3([0, T ]). (5.4)

As a result of (5.4), the shift function should have the following regularity.

GD ∈ C2([0, T ], L2(Ω)) and GN ∈ C3([0, T ], L2(Ω)).

Eventually, we end up with an equivalent IVP with homogeneous BC by defining

wBC(x, t) := uBC(x, t)−GBC(x, t). (5.5)

Combining (1.1b) and (1.2b) with (5.1), we obtain the homogeneous BC, i.e., wD(±1, t) =
0 and wN

x(±1, t) = 0. Substituting the expression for uBC(x, t) from (5.5) into (1.1) and
(1.2), we arrive at the equivalent problem with homogeneous BC:

wBC
tt (x, t) +MBCw

BC(x, t) = bBC,w(x, t), (x, t) ∈ Ω× (0, T ),

wD(±1, t) = 0 or wN
x(±1, t) = 0,

wBC(x, 0) = φwBC(x),

wBC
t (x, 0) = ψwBC(x),

where we define

bBC,w(x, t) := bBC(x, t)−GBC
tt (x, t)−MBCG

BC(x, t)

φwBC(x) := φBC(x)−GBC(x, 0)

ψwBC(x) := ψBC(x)−GBC
t (x, 0).

Then, the explicit expression for the solution uBC(x, t) from (4.1) takes the form

uBC(x, t) = GBC(x, t) + cos(t
√
MBC)

(
φBC(x)−GBC(x, 0)

)
+

sin(t
√
MBC)√
MBC

(
ψBC(x)−GBC

t (x, 0)
)
+∫ t

0

sin
(
(t− τ)

√
MBC

)
√
MBC

(
bBC(x, τ)−GBC

tt (x, τ)−MBCG
BC(x, τ)

)
dτ.

8
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The corresponding series representation takes the form

uBC(x, t) = GBC(x, t) +
∑
k∈NBC

cos
(
t
√
fBC(λBCk )

)
〈eBCk |φBC −GBC(·, 0)〉 eBCk (x)+

∑
k∈NBC

sin
(
t
√
fBC(λBCk )

)√
fBC(λBCk )

〈eBCk |ψBC −GBC
t (·, 0)〉 eBCk (x)+

∑
k∈NBC

[ ∫ t

0

sin
(
(t− τ)

√
fBC(λBCk )

)√
fBC(λBCk )

〈eBCk |bBC(·, τ)−GBC
tt (·, τ)−MBCG

BC(·, τ)〉 dτ
]
eBCk (x).

(5.6)

To find an exact solution with inhomogeneous BC, we make the following choices for the
series representation (5.6):

bBC(x, t) = GBC
tt (x, t) +MBCG

BC(x, t),

φBC(x) = GBC(x, 0),

ψBC(x) = GBC
t (x, 0).

With this choice, note that all the terms in (5.6) vanish except the first term. Eventually,
we arrive at the exact solution

uBC(x, t) = GBC(x, t). (5.7)

6 NUMERICAL EXPERIMENTS

We employ a collocation method with linear basis functions to discretize the governing
equations (1.1a) and (1.2a). We choose a family of kernel functions with horizon δ

C(x) :=


2

δm
(
1−

∣∣x
δ

∣∣), x ∈ (−δ, δ)

0, otherwise,

with m = 0, . . . , 3. The scaling 1/δm is inserted to capture the local operator when m = 3;
see [6]. We use the same boundary data for Dirichlet and Neumann problems:

αBC
− (t) :=


1

4
(1− cos(πt))2, t ∈ [0, 2]

0, t ∈ (2, 10]
and αBC

+ (t) := 0, t ∈ [0, 10],

where

uD(±1, t) = αD
±(t) and

∂uN

∂x
(±1, t) = αN

±(t).

Note that αBC
± (t) ∈ C3([0, 10]). For discretization, we use an adaptive mesh with mesh

spacing h and δ inside and outside the bulk, respectively. Hence, mesh nodes are

Ωh := {−1,−1 + δ,−1 + δ + h, . . . ,−h, 0, h, . . . , 1− δ − h, 1− δ, 1}.

9
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(a) The scaling m = 3 captures the local solu-
tion. No dispersion arises.

(b) The scaling m = 2 gives rise to dispersion.

Figure 6.1: Displacement of the Dirichlet problems with unknown solution. Note that δ = 4h.

(a) Approximate displacement uD(x, t). (b) Displacement error eD(x, t).

Figure 6.2: Displacement of the Dirichlet problem with known exact solution.

For time integration, we employ the Newmark scheme with ∆t = 10−3. We define the
pointwise error between the exact and the approximate displacement

eBC(xi, tj) := GBC(xi, tj)− uBC(xi, tj), (6.1)

where uBC denotes the approximate displacement. On the other hand, for the Neumann
problem, we also define the stress error by

estress(xi, tj) := GN
x(xi, tj)− s(xi, tj), (6.2)

where s(xi, tj) denotes the approximate stress computed by a central difference scheme.

10
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(a) Approximate displacement uN(x, t). (b) Displacement error eN(x, t).

(c) Approximate stress s(x, t). (d) Stress error estress(x, t).

Figure 6.3: Displacement and stress of the Neumann problem with known exact solution.

6.1 Dirichlet Problem with Unknown Solution

We report experiments of the Dirichlet problem (1.1) with unknown solution. We
choose zero initial data, i.e., uD(x, 0) = uDt (x, 0) = 0, and zero forcing function in the
interior so that the wave propagation is initiated only by the boundary data. Reflecting
on (3.7)1, the forcing function becomes

bD(±1, t) =
d2αD

±

dt2
(t) + cαD

±(t) and bD(x, t) = 0, x 6= ±1.

When the kernel function is scaled with 1/δ3, we observe a wave pattern reminiscent of
the classical wave equation. We also observe a boundary reflection agreeing with the
classical equation, i.e., a reflection pattern with opposite sign. On the other hand, when
the scaling is 1/δ2, we observe a dispersive wave pattern common to NL operators. See
Fig. 6.1. For both cases, we choose δ = 4h with h = 2−7 indicating that the computation
is NL.
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6.2 Dirichlet and Neumann Problem with Known Exact Solution

We verify the accuracy of the numerical solution by employing the exact solutions given
in (5.7) and the shift functions in (5.2) and (5.3). The forcing functions are chosen as

bBC(x, t) = GBC
tt (x, t) +MBCG

BC(x, t), x ∈ Ω, t ∈ [0, 10].

We choose ∆t = h = O(10−3). We observe that the computational solutions well approx-
imate the exact solutions. For the Dirichlet problem, we monitor the displacement error
by using (6.1). We observe that eD(xi, tj) = O(10−6) = O(∆t2 +h2). Due to scaling 1/δ3,
the error propagation is similar to the classical wave pattern free from dispersion. See
Fig. 6.2.

For the Neumann problem, we monitor the displacement and stress error by using
(6.1) and (6.2), respectively. We also observe that eN(xi, tj) = eNstress(xi, tj) = O(10−6) =
O(∆t2 + h2). See Fig. 6.3.
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