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Abstract. The computation of the sound power level resulting from the vibration of sub-
merged structures is a CPU time-consuming process in the naval industry, due to both
geometrical complexity and strong coupling with the fluid. The goal is here to obtain a
parametric reduced-order model (ROM), yielding a fast and accurate approximation of
the radiated sound power level, when the parameters and the fluid loading vary. The
proposed approach includes the following ingredients: (i) the goal-oriented formulation
of the problem at hand; (ii) the reduction of both primal and dual vibroacoustic prob-
lems through reduced basis techniques; (iii) the use of a leave-one-out cross-validation
(LOOCV) process in the offline step for the selection of the truncated representations;
(iv) the reduction of the hydrodynamic loading. It is shown, on a simple test case involving
a submerged structure with variabilities of the structural parameters, that the approach
enables to obtain an accurate approximation of the quantity of interest. The LOOCV
technique moreover limits the offline CPU time and yields a cheap error estimator. The
approach is versatile and can take into account frequency-dependent damping. The CPU
time gain compared to the full model evaluations is of several orders of magnitude, opening
the way to new design strategies in the naval industry.

1 INTRODUCTION

The computation of the sound power level resulting from the vibration of submerged
structures is a CPU time-consuming process in the naval industry, on account on the large
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size of the underlying problems, their geometrical complexities, as well as the strong cou-
pling with the fluid. The finite element discretization of such a forced vibration problem
usually results in a linear matrix system with millions of degrees of freedom. The matri-
ces at hand are sparse, complex-valued and frequency-dependent for dissipative materials.
The resulting system is typically ill-conditioned and not Hermitian. It has to be solved
at each frequency of interest, ideally on a wide frequency range. In the design process,
the choice of the materials and their characteristics, if known, may moreover evolve, so
that numerous computations are theoretically required with new values of the parame-
ters. The use of dissipative materials furthermore complicates the numerical modeling
and computation of the problem since they are very sensitive to non-mastered opera-
tional conditions. A robust design should take into account all these variabilities and
uncertainties, and their impacts on the quantities of interest should be quantified. How-
ever in industrial practice, the large CPU-time requirement drastically limits the number
of shots performed. Analyzes on coarse frequency grids and with only few parameters
values are usually performed. This prevents the rigorous computation of the impact of
the variabilities, which may ultimately affect the robustness and optimality of the design.

Reduced Order Models (ROMs) are nowadays able to represent complex systems with
few degrees of freedom at the cost of a moderate loss of accuracy. The crucial point to
obtain a reliable parametric ROM is to build a reduced trial space that spans most of the
physics at hand, over the whole parameter space of interest. Obviously, the reduced basis
has to be of much lower dimension than the discretized full model, for a very fast online
evaluation of the solution. In the vibroacoustic domain, most common reduction tech-
niques are based on Krylov subspace reduction [1], more precisely with the second-order
Arnoldi algorithm [2, 3], and on modal projection techniques [4, 5, 6]. These approaches
are able to efficiently solve problems involving viscoelastic materials and submerged struc-
tures. The multidimensional character of the parameter space constitutes here an addi-
tional challenge. The extension of the classical approaches to multi-parametric problems
may not be straightforward and may still involve ad hoc and non-automatic procedures,
at the risk of inaccurate estimations of the quantities of interest.

A model reduction technique is developed and evaluated in this paper, so as to make
tractable analyzes on very fine frequency grids, as well as to handle the complexity of
a relatively high-dimensional parameter space, for damped and submerged structures.
The proposed approach may be seen as an extension of [7], with here a goal-oriented
formulation of the problem at hand. More precisely, the quantities of interest are the
point radiated pressure level and the sound pressure level, respectively a linear output
and a quadratic one. The goal-oriented feature comes from both a primal-dual Reduced-
Basis formulation inspired by the work [8], and the development of a cheap error estimator
on the output, based on a leave-one-out-cross-validation (LOOCV) process in the offline
step. Furthermore, the problem is formulated by taking into account the variabilities the
material parameters and the hydrodynamic loading [9, 10].

2



Cédric Leblond, Mathilde Chevreuil, Cyrille Allery and Claudine Beghein

Figure 1: Illustration of the mesh of the studied case. The structure Ωs is made of a circular cylindrical
shell of finite length and a flat clamped plate. The structure is loaded on its cylindrical part and is
submerged in a fluid domain Ωf . An impedance is applied on the spherical boundary Γ∞ to mimic the
influence of an infinite fluid domain.

2 FULL MODELS

We consider a structure Ωs submerged in a fluid domain Ωf , see for instance Figure 1.
The structure is made of an elastic or a viscoelastic material, with a frequency-dependent
damping. The fluid medium is assumed at rest with an acoustic behavior and interacts
with the body on a boundary Γ̃. An impedance, corresponding to the BGT condition
of order 1 [11], is applied on the spherical boundary Γ∞ to mimic the influence of an
infinite fluid domain. Numerous formulations can be found in the literature to model the
structure-acoustic interaction problem. We choose here the symmetrical (displacement,
pressure, potential) formulation [12, 13]; the proposed methodology can nevertheless be
straightforwardly applied to other formulations. Under these assumptions, the finite el-
ement discretization of the harmonic structure-acoustic interaction problem yields the
following matrix system [7, 14]:[

−iω3I− ω2M + K(ω)
]
x = f (1)

with ω the frequency, I the impedance matrix resulting from the impedance boundary
condition, M the coupled mass matrix, K the coupled stiffness matrix, x ∈ CN the
structure-acoustic solution (with N the number of degrees of freedom) and f the loading.
As for the quantities of interest, more precisely the local pressure (linear output sl) and
the sound power (quadratic output sq), they take respectively the following form:
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sl = lTx (2)

sq = x̄TSx

with l a vector extracting the pressure at a defined location from the solution x, and
S a real-valued symmetrical matrix related to the numerical integration of the pressure
degrees of freedom on Γ∞.

The main goal of the present paper is to be able to evaluate quickly and accurately the
outputs when the system parameters vary. The parameters set D ⊂ RP is now defined and
a point in this set is denoted µ ≡ {µ1, · · · , µP}. The variations of the physical parameters
are considered through the parameterized quantities ω(µ), E(µ) ≡ E(ω(µ), µ) the Young
modulus, η(µ) ≡ η(ω(µ), µ) the loss factor and f(µ). The parameterized primal full model
can now be written:

A(µ)x(µ) = f(µ) (3)

where the matrix A(µ) and the vector f(µ) are explicitly given by:

A(µ) = −iω3(µ)I− ω2(µ)M + E(µ)[1 + iη(µ)]Ks + Kf (4)

f(µ) =

Nf∑
i=1

γi(µ)fi

with Ks the structural part of the stiffness matrix obtained with an unitary Young modu-
lus and Kf its acoustic part. The affine form of the hydrodynamic loading f(µ) may come
from a hydrodynamic ROM built with Proper Generalized Decomposition [9] or Proper
Orthogonal Decomposition [10], through a special focus on the reduction of the fluid flow
pressure.

3 REDUCED-BASIS APPROXIMATION

3.1 Definitions and low-rank approximations

We choose the space-parameter decomposition of order Np for the primal solution under
the following monolithic low-rank approximation:

xNp(µ) =

Np∑
n=1

αn(µ)Φn = ΦNpαNp(µ) (5)

with αn(µ) ∈ C, Φn ∈ CN , αNp(µ) =
{
α1(µ), · · · , αNp(µ)

}T ∈ CNp and ΦNp =
[
Φ1, · · · ,ΦNp

]
∈ CN×Np . The introduction of Eq. (5) into the primal full model Eq. (3) yields the primal
residual rNp(µ) = b(µ) −A(µ)xNp(µ). We now introduce the dual full models, inspired
by the work [8]:

ĀT (µ)yl(µ) = l (6)

ĀT (µ)yq
Np

(µ) = S(x(µ) + xNp(µ))
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with yl and yq
Np

the dual solutions related respectively to the linear and the quadratic
outputs. As for the Nd-rank approximations of the dual solutions, they are chosen under
the form:

yl
Nd

(µ) =

Nd∑
n=1

βl
n(µ)Ψl

n = Ψl,Ndβl,Nd(µ) (7)

yq
Np,Nd

(µ) =

Nd∑
n=1

βq
n(µ)Ψq

n = Ψq,Ndβq,Nd(µ)

with, for j = l or q, βj
n(µ) ∈ C, Ψj

n ∈ CN , βj,Nd(µ) =
{
βj
1(µ), · · · , βj

Nd
(µ)
}T ∈ CNd and

Ψj,Nd =
[
Ψj

1, · · · ,Ψ
j
Nd

]
∈ CN×Nd . We finally define the low-rank approximations of the

outputs Eq. (2) as:

slNp,Nd
= lTxNp(µ) + (ȳl

Nd
(µ))T rNp(µ) (8)

sqNp,Nd
= (x̄Np(µ))TSxNp(µ) + <

{
(ȳq

Np,Nd
(µ))T rNp(µ)

}
The first terms of the above right-hand sides can be evaluated with only the low-rank
approximation of the primal solution, and the second terms, which can be considered
as corrective terms, require the computation of the primal residuals and the low-rank
approximations of the dual solutions.

3.2 Offline building of the parametric primal and dual ROMs

Let us assume that appropriate trial space bases ΦNp ∈ CN×Np and Ψj,Nd ∈ CN×Nd

(for j = l or q) are already known. The building of such bases constitutes the subject
of Section 3.3. The primal and dual ROMs are here classically obtained by performing a
Galerkin projection of the full model Eq. (3) and Eq. (6) respectively:

Φ̄T
mA(µ)xNp(µ) = Φ̄T

mf(µ), for m = 1 · · ·Np

(Ψ̄j
m)T ĀT (µ)yl

Nd
(µ) = (Ψ̄j

m)T l, for m = 1 · · ·Nd (9)

(Ψ̄j
m)T ĀT (µ)yq

Np,Nd
(µ) = 2(Ψ̄j

m)TSxNp(µ), for m = 1 · · ·Nd

These equations can be more explicitly written under an online-efficient form by using
Eq. (4). We can now quickly evaluate the low-rank approximations xNp(µ), yl

Nd
(µ) and

yq
Np,Nd

(µ) by solving respectively the above primal and dual ROMs.
It can then be easily shown with all the above definitions, that the outputs approxi-

mations Eq. (8) satisfy the following properties:

sl(µ)− slNp,Nd
(µ) =

[
ȳl(µ)− ȳl

Nd
(µ)
]T

A(µ)
[
x(µ)− xNp(µ)

]
(10)

sq(µ)− sqNp,Nd
(µ) = <

{[
ȳq
Np

(µ)− ȳq
Np,Nd

(µ)
]T

A(µ)
[
x(µ)− xNp(µ)

]}
which are the expected ’quadratic’ convergence properties [15].
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Algorithm 1 RB-LOOCV algorithm

Input: parameterized full model A(µ) and f(µ), ε < 1, Nloocv

Output: Trial bases ΦNp and Ψj,Nd ,
1: Initialization: set Φ0 = ∅, Ψj,0 = ∅, m = 1, eloocv = 1
2: Generate a random sampling of Nmax values of the parameter µ ∈ D

SNmax =
{
µ1, · · · , µNmax

}
∈ DNmax

3: while m ≤ Nmax and eloocv > ε do
4: Solve the primal full model Eq. (3)

A(µm)x(µm) = f(µm)

5: Enrich the primal space basis

Φm =
[
Φm−1,Gram-Schmidt(x(µm))

]
6: Solve the dual full model Eq. (6)

ĀT (µm)yl(µm) = l or ĀT (µm)yq
Np

(µm) = 2S(x(µm))

7: Enrich the dual space basis

Ψj,m =
[
Ψj,m−1,Gram-Schmidt(yl(µm) or yq

Np
(µm))

]
8: if m > Nloocv then
9: Evaluate the mean error eloocv of the output Eq. (8) with LOOCV on the sampling

SNloocv
=
{
µm−Nloocv , · · · , µm

}
∈ DNloocv

10: end if
11: m← m+ 1
12: end while

3.3 Offline building of the trial space bases

A critical aspect to build an accurate parametric ROM lies in the reduced trial basis:
the trial space has to be rich enough to cover most of the physics of the problem at hand,
and low dimensional enough to significantly reduce the CPU time of the ROM evaluation.
We follow here the classical reduced basis approach to build the trial space bases for
the primal and dual problems. More precisely, the low dimensional trial subspaces are
defined by XNp = span{x(µi), i = 1, · · · , Np}, Y l

Nd
= span{yl(µi), i = 1, · · · , Nd} and

Yq
Nd

= span{yq
Np

(µi), i = 1, · · · , Nd} for respectively the primal problem, the dual one
related to the linear output and the dual one related to the quadratic output. In practice,
the modified Gram-Schmidt orthogonalization process is used to build ΦNp , Ψl,Nd and
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Ψq,Nd . In the case treated here, we take Np = Nd and an unique random sampling in DNp

is chosen to create the discrete set of parameters µi for i = 1, · · · , Np for both the primal
and dual problems.

Another crucial aspect concerns the stopping criterion for the size of the space bases.
Since the matrix A(µ) is neither hermitian nor positive definite in standard vibroacoustic
formulations, usual error estimators, for instance based on the coercivity constant, may
not be used. Inspired by machine learning techniques, a leave-one-out-cross-validation
(LOOCV) process is developed here to control the accuracy of the ROM as a function
of the approximations ranks. More precisely, the accuracy of the output is computed
and used as stopping criterion, which hence contributes to the goal-oriented feature of
the approach. To limit the CPU time requirement for the error estimator, the LOOCV
technique is performed only on the Nloocv last added samples (with Nloocv = 10 or 15 for
instance). The resulting methodology is explicitly given in Algorithm 1.

4 ILLUSTRATIONS ON A SIMPLE CASE

The ROM is evaluated on the parametric vibroacoustic problem illustrated in Figure
1. On this simple case, the solicitation is considered as homogeneous on the cylindrical
part of the structure along the x axis. The approach is implemented within the open
source finite element industrial software code aster [16] through the development of scripts
written in Python language. The finite element mesh is made of ten-nodes tetrahedral
elements for the fluid and seven-nodes triangular elements for the shell, generated with
the preprocessing open source software Salome [17].

The minimum and maximum frequencies of interest are respectively ωmin = 2π × 10
rad.s−1 and ωmax = 2π × 4000 rad.s−1. More generally, P = 4 variable parameters are
considered here: the frequency ω, the Young’s modulus E and the frequency-dependent
loss factor η (which depends itself on 2 parameters, η1 and η2, through the linear relation
η = η1 + (η2 − η1)ω/ωmax). They are explicitly expressed as functions of the uniform
random variable µ ≡ {µ1, µ2, µ3, µ4} ∈ (0, 1)4 by:

ω(µ) = ωmin + (ωmax − ωmin)µ1

E(µ) = 2.1× 1011 [1 + 0.1(2µ2 − 1)] (11)

η1(µ) = 0.01 [1 + 0.5(2µ3 − 1)]

η2(µ) = 0.03 [1 + 0.5(2µ4 − 1)]

The linear and quadratic outputs obtained with the ROM, Eq. (8) with Np = 80, are
first compared to those computed from the full model in Figure 2, on a uniform random
sampling made of 200 values of µ ∈ (0, 1)4. A perfect match can be observed, which
visually proves the ROM accuracy.

The convergence properties of the outputs are illustrated, as functions of the rank of the
approximations, on Figure 3. More precisely, the RMS errors on the linear and quadratic
outputs, with and without the corrective terms, are plotted. The reference curves are
obtained with the expensive holdout approach, on a random sampling of 200 values. The
RMS errors computed via the LOOCV technique (our error estimator with Nloocv = 15),
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Figure 2: Comparisons of the outputs (linear output above and quadratic output below) computed with
the ROM (80-rank approximations) and the full model, on a uniform random sampling in (0, 1)4×200.

as well as their polynomial regression curves, are also displayed. It can be seen that
the related curves are relatively close to those obtained with the holdout approach; the
LOOCV technique therefore constitutes in this context an appropriate error estimator
and enables to save CPU time during the offline step. It can also be seen that the
corrective terms enable to obtain more accurate estimations of the outputs, as expected.
The accuracy gain is more pronounced on the linear output than on the quadratic one.

8



Cédric Leblond, Mathilde Chevreuil, Cyrille Allery and Claudine Beghein

Figure 3: Convergence of the outputs as a function of the rank of the approximations.

This can be explained by a slower convergence of the reduced basis approximation on the
dual problem related to the quadratic output, due to its parameter-dependent right-hand
side.

5 WORK IN PROGRESS

A goal-oriented reduced basis approach is developed in this paper to estimate accurately
and quickly the local pressure level and the sound power level resulting from the vibration
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of submerged structures, when the material parameters are varied. It is shown that the
LOOCV technique can be used as a cheap error estimator in the offline step.

Taking into account the variability of the hydrodynamic loading is a work in progress.
The fluid loading f(µ) has to be formulated under the affine form Eq. (4). To this end, we
use a POD-ROM technique based on the Navier-Stokes equations [10]. POD bases are first
precomputed at different values of Reynolds numbers (Re), and an advanced interpolation
based on the Grassmann manifold and its tangent space [18, 19] is performed, to obtain
a basis at a new value of Re. For instance, the first POD pressure modes, related to the
case considered here and for Re = 10000, are illustrated in Figure 4. Once the new basis
is obtained, the POD-ROM can be solved to obtain the new temporal coefficients (or the
frequency ones by FFT). For illustration, the wall pressure obtained with the POD-ROM
is compared to the full model curve, at one time, in Figure 5.

Mean pressure Mode 1 Mode 2

Mode 3 Mode 4 Mode 5

Figure 4: Mean pressure field and POD pressure modes for the hydrodynamic loading at Re = 10000.

The computation of the flow parameters influence on the vibroacoustic outputs Eq. (2)
constitutes an ongoing research. Further studies will also include the exploitation of
the low-rank approximations for sensitivity and quantification of uncertainties studies,
including both structural and flow parameters variabilities.
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Figure 5: Wall pressures for Re = 10000 at one time, obtained with the POD-ROM approach and the
full model.
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