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Abstract. Fluid viscous dampers are widely employed to control and enhance the seismic 

response of structural systems. However, the reliability of these devices may be significantly 

affected by the uncertainty inherent to the manufacturing process, which might lead the dampers 

to respond in an unexpected way. The main international codes acknowledge the 

aforementioned issue and provide some acceptance criteria requiring that the response of 

prototype tests, generally expressed in terms of force-velocity relation, does not deviate from 

the nominal design condition by more than a tolerance. However, no prescriptions or limits are 

imposed on the viscous damper constitutive parameters (viscous coefficient c and velocity 

exponent ), whose admissible ranges of variability are unknown. The present paper aims to 

investigate how the seismic performance of a structural system, described in terms of mean 

annual rates of exceedance of the relevant response parameters, is affected by the uncertainty 

of damper properties. The investigation is carried out on a benchmark case study consisting of 

a low-rise steel moment-resisting frame building equipped with a set of linear and nonlinear 

viscous dampers, designed to achieve the same deterministic target performance for a reference 

seismic scenario. The study results show that the damper properties variability affects 

differently the various response parameters considered, and that in some cases significant 

seismic demand amplifications can be observed.  

1. INTRODUCTION 

Fluid viscous dampers (FVDs) are widely employed to control and enhance the seismic 

response of structural systems. Some recent studies [1,2] proved their effectiveness in 

mitigating the seismic risk of structural systems when the seismic input uncertainties are 

explicitly accounted for. However, the reliability of these devices may be significantly affected 

by the uncertainty inherent to the manufacturing process, which might lead the dampers to 

respond in an unexpected way. 
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The main international codes (ASCE/SEI-7, ASCE/SEI 41-13, EN 15129) [3–5] 

acknowledge the aforementioned issue and provide acceptance/tolerance criteria, requiring that 

the response of prototype tests, generally expressed in terms of force-velocity relation, does not 

deviate from the nominal design condition by more than a tolerance quantity. However, no 

prescriptions or limits are imposed on the viscous damper constitutive parameters (viscous 

coefficient c and velocity exponent ), whose admissible ranges of variability are unknown.  

The studies conducted on this specific aspect are very scarce. Lavan and Avishur 2013 [6] 

investigated the sensitivity of the response of linearly damped frames to uncertainty in structural 

and damping properties, the latter accounted through a coefficient of variation equal to 5% on 

the dampers viscous coefficients only ( deterministically fixed at its design value). Dall'Asta 

et al. 2017 [7] analysed, via Subset Simulation, the seismic response sensitivity of S-DoF 

systems equipped with linear and nonlinear viscous devices to variable c and , observing a 

non-negligible influence of the  exponent variability. 

The present paper aims to extend this work [7] by evaluating the influence of code-

complying damper property variations on the performance of a low-rise steel moment-resisting 

frame. The frame is equipped with a set of linear (=1.0) and nonlinear (=0.3) viscous 

dampers, designed to achieve the same deterministic target performance for a reference seismic 

scenario, and the investigation is carried out by considering two different cases of damper 

uncertainties: 1) variable c and fixed , equal to the nominal design value; 2) combined 

variation of c and . The seismic performance is described by means of demand hazard curves, 

reporting the mean annual frequency (MAF) of exceedance for the most relevant engineering 

demand parameters (EDPs), and an efficient hybrid probabilistic approach is used to achieve 

accurate estimates of these MAFs with a small number of simulations. 

2. METHODOLOGY 

2.1 Seismic performance assessment 

The seismic design and assessment of structures aims at ensuring that the probability of 

having an unsatisfactory performance (often referred to as failure) is lower than a reference 

acceptable level, whose value is prefixed by seismic codes and can be tailored to the type of 

structure at hand, its function, and the consequences of failure (ASCE 7-10; Eurocode-0Errore. 

L'origine riferimento non è stata trovata.; Probabilistic Model Code 2000) [8,9,3]. With 

reference to ordinary civil structures, different limit states and levels of the allowed exceedance 

probability are introduced to control the performance. Conventional thresholds are specified for 

these limit states and the mean annual frequencies (MAFs) of exceedance approximately vary 

from 1·10-2 1/year for serviceability limit states to 1-2·10-3 1/year for ultimate limit states 

[8,9,3], while safety checks against collapse should be oriented to ensure a mean annual failure 

rate lower than 10-5-10-6 [11,28]. 

In general, the seismic structural performance is evaluated by monitoring a set of EDPs 

relevant to the system at hand, and the seismic check aims to verify that the mean annual 

frequency (MAF) 𝜈𝐸𝐷𝑃(𝑑𝑓) of exceeding a prefixed threshold value df is lower than an 

acceptable limit 0 (depending on the particular limit state or performance condition, as 

discussed above). Design codes [8,9,3] and practical assessment procedures follow an 

“intensity-based assessment approach” [10], aiming at satisfying the aforementioned reliability 



F. Scozzese, A. Dall’Asta and E. Tubaldi 

 3 

condition in an indirect and simplified way, avoiding probabilistic analyses. For this purpose, 

a conventional seismic response measure d* is evaluated, via structural analysis, under a seismic 

input with assigned intensity, and then it is verified that d*< df. Different threshold values of df, 

each associated to a performance objective, are coupled with the various intensity levels.  

A more rigorous performance assessment should consider explicitly the seismic demand 

hazard function, 𝜈𝐸𝐷𝑃(𝑑), expressing the MAF of exceeding different values d of the global 

and local EDP relevant to the performance of the analyzed system [10]. Obviously, in the 

evaluation of 𝜈𝐸𝐷𝑃(𝑑), all the sources of uncertainty involved in the problem shall be accounted 

for. In this regard, it may be convenient to consider two separate vectors for describing these 

uncertainties: X ∈ 𝜴 is the vector collecting the random variables representing the ground 

motion and the structural system uncertainties, which can be described by assigning a 

probability density function, and 𝜽 ∈ 𝛤 is the vector of all the other parameters affecting the 

system performance (i.e., dampers’ properties uncertainties), but for which a probabilistic 

model is not available. The corresponding nominal values of 𝜽 are hereafter denoted as 𝜽0. 

Denoting with 𝑑(𝒙|𝜽) the generic demand conditional to a given combination of model 

parameters 𝜽, it is possible to evaluate explicitly how 𝜽 affects the seismic demand hazard 

function EDP(d|𝜽) by solving the reliability integral, 

 𝜈𝐸𝐷𝑃(𝑑|𝜽) = 𝜈𝑚𝑖𝑛 ∫ 𝐼𝑑(𝒙|𝜽)
𝜴

𝑝𝑿(𝒙)𝑑𝑥 (1) 

in which 𝑝𝑋(𝒙) is the joint probability density function (PDF) of X, and 𝐼𝑑(𝒙|𝜽) is an 

indicator function, such that 𝐼𝑑 = 1 if 𝑑(𝒙|𝜽) > 𝑑∗, otherwise 𝐼𝑑 = 0. The multiplicative term 

𝜈𝑚𝑖𝑛 is the MAF of occurrence of a seismic event of any significant magnitude  [11]. 

2.2 Hybrid reliability approach for seismic demand estimation 

Monte Carlo techniques [12–14] could be employed for solving the integral of Eq. (1), but 

this type of approach is generally computationally expensive. An efficient probabilistic 

approach, denoted hereinafter as hybrid, is employed here to achieve accurate estimates of the 

𝜈𝐸𝐷𝑃(𝑑∗|𝜽) while limiting the number of simulations. For this purpose, a conditional 

probabilistic technique [10] is used to evaluate the seismic demand at different seismic intensity 

levels. More precisely, a stochastic ground motion model is considered, and Subset Simulation 

(SS) [14] is employed to derive the IM hazard curve, IM(im), up to very small rates of 

exceedances. SS also provides a set of stochastic ground motion samples conditional to 

different, non-overlapping IM intervals, which are considered to build the conditional seismic 

demand model via multiple-stripe analysis (MSA) [15]. This demand model, represented by 

𝐺𝐷|𝐼𝑀(𝑑|𝜽, 𝑖𝑚), expresses the probability of exceeding the demand value d, conditional to the 

seismic intensity im, and can be estimated via an empirical method, i.e., by counting the fraction 

of samples larger than d for each IM level. The MAF EDP (d*|𝜽) can then be evaluated as 

 𝜈𝐸𝐷𝑃(𝑑∗|𝜽) = ∫ 𝐺𝐷|𝐼𝑀(𝑑∗|𝜽, 𝑖𝑚)
𝐼𝑀

|𝑑𝜈𝐼𝑀| (2) 

where the integral is computed numerically by employing a trapezoidal rule.  

It is worth mentioning that this hybrid approach has been recently used in [16] for testing 

different ground motion selection methods. However, differently from that work, employing a 
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pure Monte Carlo approach for the simulations, in this study the more efficient Subset 

Simulation [14] is used, thus reducing further the computational cost of analysis. 

3. VISCOUS DAMPERS WITH VARIABLE PROPERTIES  

3.1 Overview  

The force-velocity constitutive law of FVDs can be described through the following 

relationship [17–19]: 

 𝐹𝑑(𝑣) = 𝑐|𝑣|𝛼𝑠𝑔𝑛(𝑣) (3) 

where v is the velocity between the device’s ends, Fd is the damper resisting force, |v| is the 

absolute value of v, sgn is the sign operator, c and  are two constitutive parameters: the former 

is a multiplicative factor, while the latter describes the damper nonlinear behaviour.  

The main international seismic codes [3–5] acknowledge that the manufacturing process is 

characterized by some uncertainty affecting the viscous constitutive parameters, whose actual 

values might differ from the nominal ones used in the design. To cope with such uncertainty, 

acceptance criteria are introduced. In particular, the ASCE/SEI 41-13 [4]Errore. L'origine 

riferimento non è stata trovata. and the European code EN 15129 [5] require that the 

maximum experimental force shown by the tested damper (subjected to harmonic displacement 

time-histories), Fd(v), deviates from the expected (design) value, Fd
*(v), by no more than a 

tolerance value p within a range of velocities v spanning from zero to the maximum design one 

𝑣∗. This requirement can be formulated in terms of the following inequality, 

 (1 − 𝑝)𝐹𝑑(𝑣) ≤ 𝐹𝑑(𝑣) ≤ (1 + 𝑝)𝐹𝑑(𝑣), 𝑣 ≤ 𝑣 ≤ 𝑣∗ (4) 

where p = 15% according to the abovementioned seismic standards. The safety check should 

be coherently carried out by employing a lower/upper bound approach, considering the worst 

conditions compatible with the acceptance criteria. 

The application proposed in this paper, which can be viewed as an extension of a previous 

work of the same authors [20] to the case of more realistic structural models including multiple 

devices, aims at investigating the influence of the variability of the viscous damper properties, 

including that of , on the seismic risk. To this aim, by denoting the viscous constitutive 

properties of n fluid viscous dampers as c [c1, …, cn] and  [1, …, n], it is possible to 

consider two rules of variation complying with the tolerances prescribed by the code, as 

described below in detail. 

3.2 Code-complying dampers properties variations 

The simplest case considered corresponds to variable viscous coefficients c and fixed 

velocity exponents , the latter assumed equal to the corresponding nominal values 𝜶0. Viscous 

coefficients are allowed to deviate from the nominal values 𝒄0 while satisfying the inequality 

constraint of Eq. (4), which can be also expressed as in Eq. (3) because the variations of c 

provide a homogeneous effect on the damper response for the whole range of velocities, with 

force variations equal to the viscous coefficient variations, 

 −0.85𝑐0,𝑖 ≤ 𝑐𝑖 ≤ 1.15𝑐0,𝑖  (𝑖 = 1, … , 𝑛)   (5) 
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Alternatively, both c and  might be assumed to vary while satisfying Eq. (4). In this case, 

the link between the dampers force variations and the perturbed viscous parameters is not 

straightforward, and joint variations (𝜶̂, 𝒄̂) of the constitutive parameters, such that  = 0 + 𝜶̂ 

and c = c0 + 𝒄̂ , must be considered. The constraint of Eq. (4) can be rewritten as follows,  

 |(𝑐0,𝑖 +  𝑐̂𝑖)𝑣(𝛼0,𝑖+ 𝛼̂𝑖) − 𝑐0,𝑖𝑣
𝛼0,𝑖| ≤ 0.15𝑐0,𝑖𝑣

𝛼0,𝑖  , ∀  0 ≤ 𝑣 ≤ 𝑣∗  (𝑖 = 1, … , 𝑛) (6) 

in which the perturbed parameters have been spelt out. 

For sake of clarity, Fig.  1(a) and (b) show, with black solid line, the normalized force-

velocity relations corresponding to respectively a linear and a nonlinear damper (b), obtained 

for the design nominal parameters (0, c0). On the same figure, the upper and lower bounds of 

the allowed response variability are also shown with red solid lines, corresponding to the case 

of viscous coefficient variations 𝑐̂ = +/−15% and 𝛼̂ = 0. Moreover, the varied response 

curves obtained for two specific pairs of perturbed values (𝛼̂, 𝑐̂) are superimposed: the dashed 

blue curve represents the maximum admissible positive variation of the exponent , 

corresponding to the condition in which the response variation attains the upper bound value 

(i.e., Fd/ Fd* = 1.15) at the design velocity (i.e., v/ v*=1); the dotted blue curve represents the 

maximum admissible negative variation of the exponent , corresponding to the condition in 

which the response variation attain the lower bound value (i.e., Fd/ Fd* = 0.85) at the design 

velocity (i.e., v/ v*=1). 

The perturbed cases discussed above comply with the tolerances for velocity values lower 

than the design one (i.e., v/ v* < 1), as required by the codes. However, for velocity values 

beyond the design one (i.e., v/ v* > 1), the perturbed force attains values outside the upper/lower 

bounds, and the specific trend depends on the sign of 𝛼̂, which governs the rate of change of 

the nonlinear response with non-homogeneous effects along the range of velocities.   

a) 

 

 

b) 

 

 

Fig.  1: FVD’s force response for code-complying damper parameters variations: a) =1.0, and b)  =0. 3. 

4. BENCHMARK CASE STUDY AND DAMPERS DESIGN 

4.1 Case study and dampers design 

The case study consists of a 3-storey steel moment-resisting (MR) frame building, designed 

within the SAC Phase II Steel Project, and widely used as benchmark structure in [21,22,2,23]. 

The structural system was designed to conform to local code requirements of California region.  

Design (𝑐0, 0)

Tolerances (𝑐̂ = +/-15%𝑐0,  ̂ = 0)

 ̂ > 0 (𝑐̂ > 0 )

 ̂ < 0 (𝑐̂ < 0 )

Design (𝑐0, 0)

Tolerances (𝑐̂ = +/-15%𝑐0,  ̂ = 0)

 ̂ > 0 (𝑐̂ > 0 )

 ̂ < 0 (𝑐̂ < 0 )
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It consists of perimeter moment-resisting frames and internal gravity frames with shear 

connections, while the structural model for analysis purposes is a two-dimensional frame 

representing one half of the structure in the north–south direction. The main geometrical details 

are shown in Fig. 2, while further details can be found in [22]. 

The finite element model of the system is developed in OpenSees [24] by following a 

distributed plasticity approach. An elastic P-delta column is introduced to account for the 

nonlinear geometrical effects induced by gravity loads, corresponding to both the inner frames 

and, not explicitly modelled, and the perimeter frame, explicitly modelled. A large displacement 

(small strain) analysis is performed. The estimated first three vibration periods T1=0.995 s, 

T2=0.325 s, and T3=0.173 s, are in good agreement with the values observed in [21,22,2]. 

4.2 Seismic scenario and intensity measure 

The Atkinson-Silva (2000) [25] source-based ground motion model for California region is 

used to characterize the seismic hazard at the site of the building. Ground motion samples can 

be generated using this model in combination with the stochastic simulation method of Boore 

(2003) [26]. The seismic scenario at the site is described through the following two 

seismological parameters, modelled as random variables: the moment magnitude M is 

characterized by the Gutenberg-Richter PDF fM(m) bounded within the interval [5, 8] and with 

parameter =2.303; the epicentral distance R is modelled according to the PDF fR(r) under the 

hypothesis of equal likelihood of seismic occurrence anywhere within a distance from the site 

rmax = 50 km, beyond which the seismic effects are assumed to become negligible. The soil 

condition is deterministically defined by the scalar value VS30 = 310 m/s [27]. Further details 

about the other ground motion model parameters not reported here can be found in [20]Errore. 

L'origine riferimento non è stata trovata.. The ground motion record-to-record variability is 

simulated by means of a Gaussian normal vector-valued function, by adding a lognormal 

random variable mod  as proposed by Jalayer and Beck (2008) [28] to increase the otherwise 

low record-to-record casualness. 

The spectral acceleration at the fundamental period T1 = 1.0 s, Sa(T1), is assumed as IM, and 

the corresponding hazard curve is provided by a single-run of Subset Simulation, performed 

with 20 simulation levels, each having a target intermediate exceedance probability p0 = 0.5, 

and N=500 samples per level. Among the N=500 ground motion time-series generated at each 

simulation level, a subset of 20 samples is considered for performing MSA. It is noteworthy 

that number of simulation levels has been defined based on a preliminary study, performed by 

considering different choices for the discretization of the IM range and for the numbers of 

accelerograms to be considered at each IM interval. Based on this study, it was concluded that 

a hybrid reliability analysis with 20 stripes and 20 ground motion samples conditional to the 

central values of the partitioned IM hazard curve allows to obtain results comparable in terms 

of accuracy to those provided by multiple Subset Simulations, for which an average of 20 

independent runs, corresponding to a total of 24000 simulations, is considered. 

4.3 Performance criteria and dampers design 

The dampers are designed to achieve an enhanced building performance level according to 

ASCE/SEI 41-13 [4], consisting of meeting the immediate occupancy requirements 
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(performance level 1-B) at the BSE-2E seismic hazard level (i.e., with probability of 

exceedance equal to 5% in 50 years, corresponding to the annual rate of exceeding 0 = 0.001).  

The dampers are placed into the structural frame (Fig. 2) connected in series to steel 

supporting braces, and two different cases are studied: linear viscous dampers (0= 1.0) and 

nonlinear (0= 0.3) viscous dampers. The structural performance is described by the interstory 

maximum drift, whose limit value at the Immediate Occupancy Limit State is assumed equal to 

0.01 according to FEMA-350 [29] for low-rise ordinary moment-resisting steel buildings. 

Following a deterministic design approach, commonly employed in practice, the damper 

viscous coefficients c0,i (i = 1, 2, 3 floor levels) are calibrated to control the mean value of the 

maximum interstory drift demand (drift_max), evaluated for a set of 7 accelerograms whose 

intensity, defined in terms of IM= Sa(T1), is consistent with the reference hazard level (i.e., with 

0 = 0.001yr-1). The IM value corresponding to the exceedance frequency considered for the 

design is equal to IM(0) = Sa(T1) = 0.63g. The subset of 7 simulated ground motion time-

histories is selected from the set of samples stored during execution of Subset Simulation, and 

the selection criteria is such that it satisfies (without scaling) the spectrum compatibility at the 

building’s first period T1 = 1.0s. The target performance, achieved for both the linear and 

nonlinear dampers case, is equal to drift_max = 0.0097rad < 0.01rad, corresponding to a 40% 

reduction with respect to the bare frame performance.  

Assuming a S275 steel grade, the supporting braces are designed to withstand (with no 

buckling) an amplified damper force according to the following expression, 

  𝐹𝑏 = 𝐹𝑑(2𝜇𝑣𝑒𝑙,𝑚𝑎𝑥) = 𝑐0|2𝜇𝑣𝑒𝑙,𝑚𝑎𝑥|
𝛼
 (7) 

corresponding to the force provided by the damper at a velocity value twice the mean 

maximum velocity vel,max observed under the set of 7 ground motions conditional to IM(0).  

Among the several methods available [30] for distributing the dampers at the various storeys, 

a distribution of c0,i proportional to the normalized shear profile (i.e., from the top below, 0.54, 

0.86, 1.00) of the first mode is considered in this study. The nominal properties of the viscous 

coefficients and axial stiffness of the steel braces are reported in Table 1. 

The performance of the system with added dampers is evaluated by monitoring the following 

EDPs: the maximum interstory drift among the storeys, edpDrift; the maximum absolute base-

shear brought by the frame only, edpVb_Frame; the maximum absolute acceleration among the 

various floors, edpAcc; the maximum absolute force and strokes among the dampers, 

respectively, edpFd Di and edpStroke Di (accounting for devices’ cost, size and failure). The 

maximum velocities experience by dampers, edpVel_Di, are also monitored.  

   

Fig. 2: Structural model and FVDs placement. 

Table 1: Damper parameters and brace stiffness with linear and nonlinear dampers. 

 c0,1 [s/m] c0,2 [s/m] c0,3 [s/m] kb [kN/mm] 

c0,2

kb
3.96m

3.96m

3.96m

9.15m9.15m9.15m9.15m

c0,1

kb

c0,3

kb
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=1.0 

=0.3 

11000 

4000 

9460 

3440 

5940 

2160 

640.23 

409.75 

5. HAZARD CURVES FOR DAMPERS WITH NOMINAL PROPERTIES 

This section shows and compares the seismic performances of the buildings equipped with 

linear and nonlinear dampers with nominal properties (,i, c0,i). In particular, the demand 

hazard curves are estimated via MSA for all of the relevant EDPs, but due to space constraints 

only some responses (i.e., drift, accelerations, stroke and force of the damper at the first-floor) 

are shown in Fig. 3. The curves related to the system equipped with linear dampers (red solid 

line) and nonlinear dampers (blue solid line) are plotted together with the corresponding 

reference performance points, having the coordinates {d*,0(d*)} and illustrated with red and 

blue circles for, respectively, linear and nonlinear dampers. The makers corresponding to the 

design response values amplified according to ASCE/SEI 41-13 [4] are also shown, using red 

and blue diamonds for, respectively, linear and nonlinear dampers. It is recalled, indeed, that 

the amplification rules suggested in ASCE/SEI 41-13 are as expressed in Eq. (7) for what 

concerns the forces (i.e., by assuming a damper velocity twice the design value), while the 

strokes are required to be amplified by a factor 2. 

a) 

 

 

b) 

 

 
c) 

 

d) 

 

Fig. 3: Demand hazard curves for dampers with nominal properties. 

By analysing the results (including those not reported in Fig. 3), it can be observed that the 

reference MAF of exceedance is around 10-3 (see red and blue circles in the charts) for all the 

EDPs and types of dampers. However, the EDPs’ hazard curves show different trends between 

linear and nonlinear dampers by moving above or below the reference MAF value. In particular, 

it is found that: 

- The structural response in terms of drift (Fig. 3a), dampers’ velocity and strokes (Fig. 

3c) is higher in the building with linear dampers within the range of MAFs EDP >10-3 

(i.e., more frequent events), while the trend is inverted by moving toward the rarer 

events region with EDP <10-3. This implies a better performance of linear dampers for 
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EDP <10-3 (reference design MAF), and a worse performance for EDP >10-3. 

- The hazard curves of the dampers’ forces (Fig. 3d) and the frame base-shear follow an 

inverted trend, in which the response of the building with nonlinear dampers is higher 

within the range of MAFs EDP >10-3, and lower for EDP <10-3. 

- The maximum absolute acceleration (Fig. 3b) is higher in the building with nonlinear 

dampers within the range of MAFs EDP >10-5 and lower for EDP <10-5. 

Furthermore, it is worth to note that the amplification rules provided by ASCE/SEI 41-13 

for both the stroke and force of dampers do not lead to homogenous reliability levels: 

- The amplified design force (Fig. 3d) is more likely to be exceeded by the nonlinear 

dampers (EDP =8.819x10-5 yr-1 in average) than by the linear ones (EDP =3.479x10-5).  

- The same results are observed for the amplified design stroke (Fig. 3c), which is more 

likely exceeded by the nonlinear dampers (with an average EDP = 1.996x10-4 yr-1) than 

by the linear ones (with an average EDP =1.136x10-4).  

- The MAF of the amplified stroke is on average higher than that of the damper force. 

The results discussed above are in agreement with the outcomes of previous studies [20,21], 

and confirm the need of improving the simplified approach provided by the codes, which does 

not ensure the same reliability levels for dampers with different exponent . 

6. EFFECT OF VARIABLE VISCOUS PROPERTIES 

6.1 Demand hazard curves for dampers with varied viscous properties 

This section analyses the influence of dampers with variable viscous properties. The 

following two pairs of perturbed conditions are investigated (Fig.  1): 1) dampers with viscous 

coefficients equal to the upper and lower limit values allowed by the code, i.e., corresponding 

to 𝑐̂𝑖 = +/−15%𝑐0,𝑖  and 𝛼̂𝑖 = 0; 2) dampers with the maximum admissible positive and 

negative variations of the exponent  (and related viscous coefficient), corresponding to the 

condition in which the damper force variation attains, respectively, the upper and lower bound 

values (i.e., Fd/ Fd* = 1.15 and Fd/ Fd* = 0.85) at the design velocity (i.e., v/ v* = 1). To be 

more specific, each of the three dampers placed in the building has a specific value of design 

velocity v*, hence the pairs of varied constitutive parameters vary from a damper to another. 

However, because the values of the design velocities are very similar for the various dampers, 

a unique pair of perturbed parameters is assumed, for each damper type (linear or nonlinear). 

In particular, the maximum design velocity experienced by the dampers at different floors is 

considered, i.e., 0.314 m/s and 0.313 m/s for, respectively, linear and nonlinear dampers. Thus, 

in the case of linear dampers the pairs of varied parameters correspond to the variations {𝑐̂𝑖 =
+31.7%𝑐0,𝑖; 𝛼̂𝑖 = +12.1%𝛼0,𝑖} and {𝑐̂𝑖 = −26.2%𝑐0,𝑖; 𝛼̂𝑖 = −12.1%𝛼0,𝑖}, while in the case 

of nonlinear dampers they correspond to the variations {𝑐̂𝑖 = +32.8%𝑐0,𝑖; 𝛼̂𝑖 = +39.3%𝛼0,𝑖} 

and {𝑐̂𝑖 = −25.9%𝑐0,𝑖; 𝛼̂𝑖 = −39.3%𝛼0,𝑖}. 

The influence on the seismic performance of these variations of the damper properties is 

assessed by monitoring the response at the following three MAF levels: 10-2, 10-3, and 10-6, 

which are approximately representative of, respectively, the serviceability limit state (SLS), the 

ultimate limit state (ULS), and the failure conditions. At each of these MAF levels, the 

percentage variation of the generic seismic demand parameter is computed through Eq. (8), in 

which dvar is the EDP value for perturbed parameters, and d0 is the one for nominal conditions.  



F. Scozzese, A. Dall’Asta and E. Tubaldi 

 10 

∆𝑑𝑚𝑎𝑥(𝜈𝐸𝐷𝑃) = 100
𝑑𝑣𝑎𝑟(𝜈𝐸𝐷𝑃) − 𝑑0(𝜈𝐸𝐷𝑃)

𝑑0(𝜈𝐸𝐷𝑃)
 

(8) 

Table 2: Percentage performance demand variations at the MAF level EDP = 10-2. 

 𝑐̂ = +15% (𝛼̂ = 0) 𝑐̂ = −15% (𝛼̂ = 0) 𝛼̂ > 0 and 𝑐̂ > 0 𝛼̂ < 0 and 𝑐̂ < 0 

Damper type L NL L NL L NL L NL 

edpDrift
 

0.00 0.00 0.00 0.00 -21.73 0.00 21.73 0.00 
edpVb_Frame 7.67 11.98 -7.67 -11.98 15.34 23.96 -11.50 -19.97 

edpAcc 0.00 6.88 0.00 -6.88 0.00 13.76 0.00 -6.88 
edpFd_dampers 14.12 7.10 -14.12 -14.20 14.12 21.31 -14.12 -21.31 

edpStroke_dampers -11.36 0.00 11.36 0.00 -11.36 0.00 11.36 14.71 
edpVel_dampers -5.78 0.00 5.78 -4.92 -5.78 4.92 11.56 -9.85 

Table 3: Percentage performance demand variations at the MAF level EDP = 10-3. 

 𝑐̂ = +15% (𝛼̂ = 0) 𝑐̂ = −15% (𝛼̂ = 0) 𝛼̂ > 0 and 𝑐̂ > 0 𝛼̂ < 0 and 𝑐̂ < 0 

Damper type L NL L NL L NL L NL 

edpDrift
 

-6.02 -6.85 6.02 13.70 -12.05 -13.70 12.05 20.55 

edpVb_Frame 5.74 9.08 -6.89 -7.95 12.63 19.30 -12.63 -13.62 

edpAcc 0.00 0.00 0.00 0.00 3.17 2.90 0.00 0.00 

edpFd_dampers 9.06 14.23 -9.06 -14.23 18.12 28.46 -18.12 -23.72 

edpStroke_dampers -6.10 -6.71 9.15 10.07 -12.20 -13.42 15.24 16.78 

edpVel_dampers -3.75 -3.75 5.63 9.38 -7.50 -5.63 11.26 15.01 

Table 4: Percentage performance demand variations at the MAF level EDP = 10-6. 

 𝑐̂ = +15% (𝛼̂ = 0) 𝑐̂ = −15% (𝛼̂ = 0) 𝛼̂ > 0 and 𝑐̂ > 0 𝛼̂ < 0 and 𝑐̂ < 0 

Damper type L NL L NL L NL L NL 

edpDrift
 

-7.48 -6.36 8.55 7.77 -13.89 -12.71 16.03 14.83 

edpVb_Frame 8.33 8.77 -8.65 -8.18 16.98 18.70 -15.70 -14.61 

edpAcc 2.49 3.59 -1.66 -3.59 4.98 8.07 -3.32 -5.38 

edpFd_dampers 9.99 14.25 -11.10 -14.25 19.98 31.36 -19.98 -25.66 

edpStroke_dampers -7.03 -6.41 8.66 7.83 -13.53 -12.82 16.23 14.60 

edpVel_dampers -3.00 -4.76 3.49 5.12 -5.49 -8.78 6.49 9.15 

Based on the results computed for both the cases of linear (L) and nonlinear (NL) dampers, 

reported in Table 2-Table 4 (with the highest positive variations highlighted by black solid 

fonts), the following conclusions can be drawn: 

- For all of the MAF levels examined, the perturbed cases with (𝑐̂ = +15% and 𝛼̂ = 0) 

and (𝑐̂ > 0 and 𝛼̂ > 0) lead to negative variations of the drift, strokes and damper 

velocity demand, while yield positive variations on the frame base-shears, damper 

forces and absolute accelerations. 

- The highest variations are observed for combined perturbations of the parameters (𝑐̂ ≠
0 and 𝛼̂ ≠ 0), whereas the EDPs are generally less sensitive to variations of c only. 

- A clear trend among the MAF levels cannot be identified for most of the EDPs, even 
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though the damper force sensitivity to the parameters perturbations increases by 

moving towards rarer hazard levels, i.e., passing from SLS to the collapse region. 

- The maximum increments reached by the damper strokes are higher than 16% in both 

linear and nonlinear dampers when 𝑐̂ < 0 and 𝛼̂ < 0, while the maximum increments 

reached by the damper forces are around 31% and 20% for, respectively, nonlinear and 

linear dampers when 𝑐̂ > 0 and 𝛼̂ > 0. 

Results discussed thus far are consistent with the outcomes obtained in [20] by considering 

a linear SDOF system with period T=1.0s.  

7. CONCLUSIONS 

This paper analyses the influence of code-complying tolerances of viscous damper properties 

on the probabilistic performance of a low-rise steel moment-resisting frame building equipped 

with a set of linear (=1.0) and nonlinear (=0.3) viscous dampers. 

The study results show that the damper properties variability affects differently the various 

response parameters considered, and in some cases significant seismic demand amplifications 

are observed with respect to the case with dampers with nominal properties. In light of this, 

should these results be confirmed in future studies, it may be advisable to improve the reliability 

factors currently provided by the codes in order to account for dampers uncertainties. 
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