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Abstract. The paper describes the mechanical behavior of two linear isotropic poroe-
lastic solids, bonded together by a thin plate-like layer, constituted by a linear isotropic
poroelastic material, by means of an asymptotic analysis. After defining a small parameter
ε, which will tend to zero, associated with the thickness and the constitutive coefficients
of the intermediate layer, we characterize three different limit models and their associated
limit problems, the so-called soft, hard and rigid poroelastic interface models, respectively.
Moreover, we identify the non classical transmission conditions at the interface between
the two three-dimensional bodies in terms of the jump of the stresses, increment of fluid,
pressure and displacements.

1 INTRODUCTION

The modeling of complex structures obtained by joining simpler elements with highly
contrasted geometric and/or material characteristics represents a source of a variety of
problems of practical importance in all fields of engineering. The geometrical complexity
of a multilayer structure requires an effort to deduce simplified mathematical models. In
the present work we undertake a rigorous derivation of the interface conditions between
two poroelastic solids separated by a thin poroelastic interphase layer by means of an
asymptotic analysis. The poroelastic bodies are characterized by the simultaneous pres-
ence of the deformation and the filtration (flow). They are described by the quasi-static
Biot’s system of PDE’s. It couples the Navier’s equations of linearized elasticity, contain-
ing the pressure gradient, with the mass conservation equation involving the fluid content
change and divergence of the filtration velocity. The filtration velocity is the relative
velocity for the upscaled fluid-structure problem and obeys Darcy’s law. The fluid con-
tent change is proportional to the pressure and the elastic body compression. For more
modeling details, we refer to [1, 2].

The application of the asymptotic methods for the mathematical justification of thin
structure models has met with success at both fields of elasticity and poroelasticity, (see,
e.g., [3, 4, 5, 6, 7]): this has helped to tunnel the research toward a rational simplification
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of the modeling of complex structures constructed by joining elements presenting highly
contrasted geometrical and mechanical properties. Within the theory of classical elasticity,
the asymptotic analysis of a thin elastic interphase between two elastic materials has
been deeply investigated through the years, by varying the rigidity ratios between the
thin inclusion and the surrounding materials and by considering different geometry and
mechanical features, see, e.g., [8, 9, 10, 11, 12, 13].

The goal of the present work is to identify the interface limit models of a linear poroe-
lastic composite constituted by a thin poroelastic layer surrounded by two poroelastic
bodies. By defining a small parameter ε, associated with the thickness and the constitu-
tive properties of the middle layer, we perform an asymptotic analysis by letting ε tend to
zero. We analyze different situations by varying the stiffnesses ratios between the middle
layer and the adherents: namely, the soft poroelastic lowly permeable interface, where
the intermediate material coefficients have order of magnitude ε with respect to those of
the surrounding bodies; the hard poroelastic moderately permeable interface, where the
costitutive parameters have the same order of magnitude; finally, the rigid poroelastic
highly permeable interface, where the rigidities have order of magnitude 1

ε
. We character-

ize the limit transmission problem at order zero and we identify the ad hoc transmission
conditions at the interface.

2 POSITION OF THE PROBLEM

In the sequel, Greek indices range in the set t1, 2u, Latin indices range in the set
t1, 2, 3u, and the Einstein’s summation convention with respect to the repeated indices is
adopted. We introduce the following notations for the inner product: a ¨ b :“ aibi.

Let Ω` and Ω´ be two disjoint open domains with smooth boundaries BΩ` and BΩ´.
Let ω :“ tBΩ` X BΩ´u˝ be the interior of the common part of the boundaries which is
assumed to be a non empty domain in R2 having a positive two-dimensional measure.
We consider the assembly constituted by two solids bonded together by an intermediate
thin plate-like body Ωm,ε of thickness 2hε, where 0 ă ε ă 1 is a dimensionless small real
parameter which will tend to zero. We suppose that the thickness 2hε of the middle layer
depends linearly on ε, so that 2hε “ 2εh.

More precisely, we denote respectively with Ω˘,ε :“ txε :“ x ˘ εhe3; x P Ω˘u, the
translation of Ω` (resp. Ω´) along the direction e3 (resp. ´e3 ) of the quantity εh, with
Ωm,ε :“ ωˆp´εh, εhq, the central plate-like domain, and with Ωε :“ Ω`,εYΩm,εYΩ´,ε, the
reference configuration of the assembly. Moreover, we define with S˘,ε :“ ω ˆ t˘εhu “
Ω˘,ε X Ωm,ε, the upper and lower faces of the intermediate plate-like domain, Γ˘,ε :“
BΩ˘,ε{S˘,ε, and Γm,εlat :“ Bω ˆ p´εh, εhq, its lateral surface, see Fig. 1.

A poroelastic medium consists of an elastic skeleton (the solid phase) and pores satu-
rated by a viscous fluid (the fluid phase). At the pore scale, one deals with a complicated
fluid-structure problem and in applications we model it using the effective medium ap-
proach, see [1]. We assume that Ω˘,ε and Ωm,ε are constituted by three homogeneous
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Figure 1: The reference configuration of the assembly and the geometry of the interphase.

linear isotropic poroelastic materials, whose constitutive laws are defined as follows:

$

’

&

’

%

σεij “ λεeεppδij ` 2µεeεij ´ α
εpεδij,

ζε “ γεGp
ε ` αεeεpp,

qεi “ ´
kε

η
Bεi p

ε,

where pσεijq is the Cauchy effective stress tensor, associated with the strain tensor peεijq :“
1
2
pBεju

ε
i`B

ε
iu

ε
jq, ζ

ε represents the increment of fluid content and pqεi q is the specific discharge
field. Constants λε, µε, αε, γεG, kε and η represent respectively the Lamé’s constants, the
effective stress coefficient, the Biot’s inverse modulus, the permeability and the viscosity
coefficients.

The deformable porous media, saturated by a fluid, are modelled using the Biot’s
diphasic equations for the effective solid displacement uε “ puεi q and the effective pressure
pε. The poroelastic state is then defined by the couple sε :“ puε, pεq. We assume that
the poroelastic composite is subject to body forces pf εi q : Ω˘,ε ˆ p0, T q Ñ R3 applied on
the top and bottom bodies, while the intermediate layer Ωm,ε is considered to be free of
charges. The poroelastic state sε solves the quasi-static Biot’s system:

"

´Bεjσ
ε
ij “ f εi in Ω˘,ε ˆ p0, T q,

Btζ
ε ` Bεi q

ε
i “ 0 in Ω˘,ε ˆ p0, T q,

"

´Bεjσ
ε
ij “ 0 in Ωm,ε ˆ p0, T q,

Btζ
ε ` Bεi q

ε
i “ 0 in Ωm,ε ˆ p0, T q,

where Bt denotes the time derivative. The transmission conditions across the interfaces
S`,ε and S´,ε implies the continuity of the state sε and of its normal dual counterpart
with respect to S˘,ε, meaning that rruεi ss “ 0, rrpεss “ 0, rrσεi3ss “ 0, and rrqε3ss “ 0 on
S˘,εˆp0, T q, where rrf ss :“ f˘´ fm denotes the jump function evaluated at the interface
S˘,ε. The boundary conditions are posed on Γε ˆ p0, T q, with Γε :“ Γ`,ε Y Γ´,ε; we
recall that Γε “ Γε1 Y Γε0. For simplicity we consider homogeneous boundary conditions
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on Γε0ˆp0, T q, concerning displacements and pressure, and non-homogeneous boundary
conditions on Γε1ˆp0, T q, concerning surface forces pgεi q and fluid flux wε. Hence, one has

"

σεijn
ε
j “ gεi on Γε1 ˆ p0, T q, uεi “ 0 on Γε0 ˆ p0, T q,

qεin
ε
i “ wε on Γε1 ˆ p0, T q, pε “ 0 on Γε0 ˆ p0, T q,

where pnεi q is the outer unit normal vector to BΩε. The initial conditions are posed in Ωε.
Let pεin be the pressure at time t “ 0, we have pεpxε, 0q “ pεp0q “ pεin in Ωε.

Let us introduce the functional spaces V pΩεq :“ tvε P H1pΩεq; vε “ 0 on Γε0u and
VpΩεq :“ rV pΩεqs3. Given a certain state sε :“ puε, pεq P VpΩεq :“ VpΩεqˆV pΩεq, for all
test functions rε “ pvε, ξεq P VpΩεq and for any fixed t P p0, T q, we introduce the following
bilinear and linear forms:

Aεpsε, rεq :“

ż

Ωε

 

σεije
ε
ijpv

ε
q ` Btζ

εξε ` qεi B
ε
i ξ
ε
(

dxε,

Lεprεq :“

ż

Ω˘,ε

f εi v
ε
i dx

ε
`

ż

Γε
1

tgεi v
ε
i ` w

εξεu dΓε.

The variational form of the Biot’s system defined over the variable domain Ωε reads as
follows:

"

Find sεptq P VpΩεq, t P p0, T q, such that
A´,εpsεptq, rεq ` A`,εpsεptq, rεq ` Am,εpsεptq, rεq “ Lεprεq,

(1)

for all rε P VpΩεq, with initial condition pεin. In order to guarantee the well-posedness of
problem (1), suitable regularity properties have to be assumed for the initial data, source
and boundary values, and constitutive parameters, see [2].

3 THE ASYMPTOTIC EXPANSIONS METHOD

In order to study the asymptotic behavior of the solution of problem (1) when ε tends
to zero, we rewrite the problem on a fixed domain Ω independent of ε. By using the
approach of [3], we consider the bijection Πε : x P Ω ÞÑ xε P Ω

ε
given by

$

’

&

’

%

Πεpx1, x2, x3q “ px1, x2, x3 ´ hp1´ εqq, for all x P Ω
`

tr,

Πεpx1, x2, x3q “ px1, x2, εx3q, for all x P Ω
m
,

Πεpx1, x2, x3q “ px1, x2, x3 ` hp1´ εqq, for all x P Ω
´

tr,

where Ω˘tr :“ tx ˘ he3, x P Ω˘u, Ωm :“ ω ˆ p´h, hq and S˘ :“ ω ˆ t˘hu. In order to

simplify the notation, we identify Ω˘tr with Ω˘, and Ω with Ω
˘
Y Ω

m
. Likewise, we note

Γ˘ :“ BΩ˘{S˘, Γmlat :“ Bωˆp´h, hq, Γ0 and Γ1, the partitions of Γ`YΓ´. Consequently,
Bεα “ Bα and Bε3 “

1
ε
B3 in Ωm. In the sequel, only if necessary, we will note, respectively,

with r˘ “ pv˘, ξ˘q and rm “ pvm, ξmq, the restrictions of functions r “ pv, ξq to Ω˘

and Ωm. With the unknown state sε “ puε, pεq, we associate the scaled unknown state
spεq :“ pupεq, ppεqq defined by:

uεi px
εq “ uipεqpxq, pεpxεq “ ppεqpxq for all xε “ Πεx P Ω

ε
.
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We likewise associate with any test functions rε “ pvε, ξεq, the scaled test functions
r “ pv, ξq, defined by the scalings:

vεi px
εq “ vipxq, ξεpxεq “ ξpxq for all xε “ Πεx P Ω

ε
.

We assume that the constitutive coefficients of Ω˘,ε are independent of ε, while the
constitutive coefficients of Ωm,ε present the following dependences on ε: λm,ε “ εpλm,
µm,ε “ εpµm, αm,ε “ εpαm, γm,εG “ εpγmG and km,ε “ εpkm, with p P t´1, 0, 1u. Three dif-
ferent limit behaviors will be characterized according to the choice of the exponent p: by
choosing p “ 1, we deduce a model for a soft poroelastic interface with low permeability;
when p “ 0, we deduce a model for a hard poroelastic interface with moderate permeabil-
ity; in the case of p “ ´1, we derive a model for a rigid poroelastic interface with high
permeability. Finally we suppose that the data verify the following scaling assumptions:

f εi px
εq “ fipxq, x P Ω˘,

gεi px
εq “ gipxq, wεpxεq “ wpxq, x P Γ1,

so that Lεprεq “ Lprq. According to the previous hypothesis, problem (1) can be refor-
mulated on a fixed domain Ω independent of ε. Thus we obtain the following rescaled
problem (in the sequel, we will omit the explicit dependences on time t of the unknowns
and data):

"

Find spεq P VpΩq, t P p0, T q, such that
A´pspεq, rq ` A`pspεq, rq ` εp`1Ampspεq, rq “ Lprq,

(2)

for all r P VpΩq, p P t´1, 0, 1u, with initial condition pinpεq, where

A˘pspεq, rq :“

ż

Ω˘

 

σ˘ijpεqeijpvq ` Btζ
˘
pεqξ ` q˘i pεqBiξ

(

dx,

Ampspεq, rq :“
1

ε2
a0pspεq, rq `

1

ε
a1pspεq, rq ` a2pspεq, rq,

where

a0pspεq, rq :“

ż

Ωm

"

pλm ` 2µmqe33pupεqqe33pvq ` µ
m
B3uαpεqB3vα `

km

η
B3ppεqB3ξ

*

dx,

a1pspεq, rq :“

ż

Ωm

tλmpeσσpupεqqe33pvq ` e33pupεqqeσσpvqq ` µ
m
Bαu3pεqB3vα`

`µmB3uαpεqBαv3 ´ α
mppεqe33pvq ` α

mBtpB3u3pεqqξu dx,

a2pspεq, rq :“

ż

Ωm

t2µmeαβpupεqqeαβpvq ` pλ
meσσpupεqq ´ α

mppεqqeττ pvq`

`µmBαu3pεqBαv3 ` Btpγ
m
G ppεq ` α

mBαuαpεqqξ `
km

η
BαppεqBαξ

)

dx.

We can now apply the asymptotic expansion method to the rescaled problem (2) and
distinguish the three cases of weak, hard and rigid poroelastic interfaces. Since the rescaled
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problem (2) has a polynomial structure with respect to the small parameter ε, we can
look for the solution of the problem as a series of powers of ε:

spεq “ s0 ` εs1 ` ε2s2 ` . . . ñ

"

upεq “ u0 ` εu1 ` ε2u2 ` . . .
ppεq “ p0 ` εp1 ` ε2p2 ` . . .

(3)

Hence, by substituting expressions (3) in (2) and by identifying the terms with identical
power of ε, we can finally characterize the limit problems for p “ 1, p “ 0 and p “ ´1.

4 THE SOFT POROELASTIC INTERFACE PROBLEM

In this section we derive the limit model for a soft poroelastic interface with low per-
meability. Let us define the following functional spaces W pΩq :“ tv P L2pΩq; v˘ P

H1pΩ˘q, B3v
m P L2pΩmq, v˘ “ vm on S˘, v “ 0 on Γ0u, WpΩq :“ rW pΩqs3. Let us

choose p “ 1 in (2), the formulation of the limit problem reads as follows:

#

Find s0 PWpΩq :“WpΩq ˆW pΩq, t P p0, T q, such that

A´ps0, rq ` A`ps0, rq ` a0ps
0, rq “ Lprq,

(4)

for all r PWpΩq, with

a0ps
0, rq :“

ż

Ωm

"

KB3u
m,0
¨ B3v `

km

η
B3p

m,0
B3ξ

*

dx,

and K :“ diagtµm, µm, 2µm`λmu, being the diagonal interface stiffness matrix. The limit
problem (4) can be simplified if one considers the structure of the bilinear form a0p¨, ¨q,
which involves only the derivatives along the x3-coordinates. Indeed, by choosing test
functions vi, ξ P DpΩmq, with compact support in Ωm, one has

ż

Ωm

"

KB3u
m,0
¨ B3v `

km

η
B3p

m,0
B3ξ

*

dx “ 0.

The previous variational equation implies the existence of two constant functions with
respect to the x3-coordinate, namely, zu “ zupx̃q and zp “ zppx̃q, with x̃ “ pxαq, such
that

"

KB3u
m,0 “ zu,

km

η
B3p

m,0 “ zp.

We can now solve the above linear system and, by imposing the continuity conditions
at the interfaces S` and S´ for the displacements u0 and pressure p0, we find that

zu “ 1
2h
Krru0ss and zp “ 1

2h
km

η
rrp0ss. Moreover, since B3u

m,0 “
rru0ss

2h
and B3p

m,0 “
rrp0ss
2h

,

um,0 and pm,0 become affine functions of x3. Indeed,

um,0px̃, x3q “ xu
0ypx̃q ` x3

2h
rru0sspx̃q,

pm,0px̃, x3q “ xp
0ypx̃q ` x3

2h
rrp0sspx̃q,

(5)
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where xfy :“ 1
2
pf |S``f |S´q and rrf ss “ f |S`´f |S´ denote respectively the mean value and

the jump of the restrictions of f on S` and S´. Equations (5) represent a representation
formula of the limit kinematics of the adhesive layer in the limit problem. By using the
continuity conditions on S` and S´ of the displacement field and the pressure and after
an integration by parts on x3, we get

a0ps
0, rq “

ż

S`

pzu ¨ v` ` zpξ`qdΓ´

ż

S´

pzu ¨ v´ ` zpξ´qdΓ.

Hence, using expressions (5) and by identifying S` and S´ with the interface ω, the limit
problem can be reformulated in the following reduced form:

"

Find s0 P W̃pΩq :“ W̃pΩq ˆ W̃ pΩq, t P p0, T q, such that
A´ps0, rq ` A`ps0, rq ` ã0ps

0, rq “ Lprq,
(6)

for all r P W̃pΩq, where W̃ pΩq :“ tv P L2pΩq; v˘ P H1pΩ˘q, v “ 0 on Γ0u, with
self-explanatory notation, and

ã0ps
0, rq :“

1

2h

ż

ω

"

Krru0
ss ¨ rrvss `

km

η
rrp0
ssrrξss

*

dx̃.

Thanks to the asymptotic analysis, we transform the limit problem onto a coupled
interface problem between Ω` and Ω´, with non classical transmission conditions at the
interface ω. This problem represents a poroelastic generalization of the soft linear elastic
interface model obtained in [9]. We rewrite problem (6) in its differential form and we
obtain:

Quasi-static Biot’s system in Ω˘
$

’

’

’

&

’

’

’

%

´Bjσ
˘,0
ij “ fi in Ω˘,

Btζ
˘,0
` Biq

˘,0
i “ 0 in Ω˘,

σ˘,0ij nj “ gi, q
˘,0
i ni “ w on Γ1,

u0
i “ p0

“ 0 on Γ0,

Transmission conditions
$

’

’

’

’

&

’

’

’

’

%

σ`,0i3 “ 1
2h
Kijrru

0
j ss on ω,

σ´,0i3 “ 1
2h
Kijrru

0
j ss on ω,

q`,03 “ 1
2h

km

η
rrp0ss on ω,

q´,03 “ 1
2h

km

η
rrp0ss on ω,

The limit model for a soft poroelastic interface provides a discontinuity of the limit state
s0 “ pu0, p0q at the interface between Ω` and Ω´. The interphase behaves, from a
mechanical point of view, as a distribution of extensional linear springs reacting to the
gap of the displacements between the top and bottom faces. The low permeability still
allows the saturated fluid to flow through the interface thanks to the difference of pressures
between to top and bottom faces, identifying the so-called open pore interface, see [14].
Besides, subtracting two by two the transmission conditions above, we obtain that the
jump of the stress vector and the jump of the normal flux referred to the plane of the
interface ω, vanish, so that rrσ0

i3ss “ 0, rrq0
3ss “ 0.
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5 THE HARD POROELASTIC INTERFACE PROBLEM

In this section we derive the limit model for a hard poroelastic interface, whose per-
meability has the same order of magnitude of the adherents. Let us define the following
functional spaces XpΩ̃q :“ tv P H1pΩ̃q, v|ω P H

1pωq, v “ 0 on Γ0u, XpΩ̃q :“ rX̃pΩ̃qs3,
with Ω̃ :“ Ω` Y ω Y Ω´.

The limit problem can be obtained using classical tools of asymptotic analysis. Let
p “ 0 in (2). First, we analyze the variational problem corresponding to the order ε´1

and we obtain that a0ps
0, rq “ 0, for all r P VpΩq. This problem is satisfied when

B3u
m,0
i “ 0 and B3p

m,0 “ 0, meaning that um,0i px̃, x3q “ um,0i px̃q and pm,0px̃, x3q “ pm,0px̃q
are independent of the x3-coordinate. By virtue of the above results and by choosing test
functions r P XpΩ̃q :“ XpΩ̃q ˆ XpΩ̃q, we write the variational problem associated with
the order ε0:

"

Find s0 P XpΩ̃q, t P p0, T q, such that
A´ps0, rq ` A`ps0, rq “ Lprq,

(7)

for all r P XpΩ̃q. By rewriting problem (7) in its differential form, we have

Quasi-static Biot’s system in Ω˘
$

’

’

’

&

’

’

’

%

´Bjσ
˘,0
ij “ fi in Ω˘,

Btζ
˘,0
` Biq

˘,0
i “ 0 in Ω˘,

σ˘,0ij nj “ gi, q
˘,0
i ni “ w on Γ1,

u0
i “ p0

“ 0 on Γ0,

Transmission conditions
"

rru0
i ss “ 0, rrp0ss “ 0 on ω,

rrσ0
i3ss “ 0, rrq0

3ss “ 0 on ω.

As we can notice, at order 0, we do not perceive the presence of the thin layer, having the
same rigidity and permeability of the surrounding bodies. The transmission conditions
provide the continuity of the displacement field, pressure, stress vector and flux related to
the plane of the interface, respectively. In this case, the two bodies are perfectly bonded
together and the presence of the interlayer does not influence the mechanical behavior of
the composite.

6 THE RIGID POROELASTIC INTERFACE PROBLEM

In this section we derive the limit model for a rigid and highly permeable poroelastic
interface. The asymptotic procedure to obtain the rigid interface model follows the same
steps adopted in Section 5. In the sequel, we will present just the expression of the limit
problem in its variational and differential form. The limit poroelastic state s0 satisfies the
following limit problem

"

Find s0 P XpΩ̃q, t P p0, T q, such that
A´ps0, rq ` A`ps0, rq ` ã2ps

0, rq “ Lprq,
(8)

for all r P XpΩ̃q, where the bilinear form ã2p¨, ¨q is defined as follows

ã2ps
0, rq :“ 2h

ż

ω

!

2µmeαβpu
0
qeαβpvq ` pλ̃

meσσpu
0
q ´ α̃mp0

qeττ pvq`

` Btpα̃
meσσpu

0q ` γ̃mG p
0qξ ` km

η
Bαp

0Bαξ
)

dx̃,
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with λ̃m :“ 2µmλm

λm`2µm
, α̃m :“ 2µmαm

λm`2µm
and γ̃mG :“ γmG ´

pαmq2

λm`2µm
. The limit problem can be

formulated as a differential system as follows:

Quasi-static Biot’s system in Ω˘
$

’

’

’

&

’

’

’

%

´Bjσ
˘,0
ij “ fi in Ω˘,

Btζ
˘,0
` Biq

˘,0
i “ 0 in Ω˘,

σ˘,0ij nj “ gi, q
˘,0
i ni “ w on Γ1,

u0
i “ p0

“ 0 on Γ0,

Transmission conditions
$

’

’

&

’

’

%

rru0
i ss “ 0, rrp0ss “ 0 on ω,

rrσ0
α3ss “ ´2hBβt

0
αβ, rrσ

0
33ss “ 0 on ω,

rrq0
3ss “ ´2h

´

BtΣ
0 ´ km

η
∆p0

¯

on ω,

where ∆ :“ Bαα denotes the Laplacian operator, t0αβ :“ 2µmeαβpu
0q ` pλ̃meσσpu

0q ´

α̃mp0qδαβ and Σ0 :“ α̃meσσpu
0q ` γ̃mG p

0 represent the two-dimensional poroelastic mem-
brane stress tensor and the membrane increment of fluid, respectively, and define the
two-dimensional constitutive law of a poroelastic membrane. The careful reader can no-
tice that the transmission conditions, associated with the jump of stresses and flux lead to
a two-dimensional membrane quasi-static Biot’s system at the interface ω. In this particu-
lar case, the continuity of displacements and pressure is verified. This problem represents
a poroelastic generalization of the Ventcel-type transmission conditions obtained in [8].

7 Concluding remarks

In the present work we derive three interface models for a poroelastic composite present-
ing a thin poroelastic interphase in the framework of quasi-static Biot’s diphasic system by
means of the asymptotic expansions method. We analyze three particular cases: the first
case, for p “ 1, corresponding from a mechanical point of view to a soft lowly permeable
interphase; the second case, for p “ 0, corresponding from a mechanical point of view to
a hard moderately permeable interphase; the latter, for p “ ´1, corresponding to a rigid
highly permeable interphase into two poroelastic media. We identify the order 0 interface
models, achieving a poroelastic generalization of the soft, hard and rigid interface models
obtained in [8, 9, 11].
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