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Abstract. Numerical simulations can help to understand the mechanisms of sound
producing sources. In this work a numerical scheme for calculating surface tension domi-
nated multiphase flows coupled with acoustics is presented. The Volume-of-Fluid (VOF)
method is used to calculate the incompressible multiphase flow. Surface tension is taken
into account by the Continuum Surface Force (CSF) method. An Expansion about Incom-
pressible Flow (EIF) approach using the Linearized Euler Equations (LEE) is employed
for the acoustics. The LEE are valid in each phase independently of the material param-
eters, but not at the interface. When the interface moves, unphysical acoustic sources
arise. An approach which suppresses the sources in the interface region is applied. Com-
paring the new approach with the unchanged LEE in a moving drop test case, it is shown
that the parasitic sound vanishes. An elliptic drop oscillating in a resting background
flow serves as a second test case, in which the moving interface has to produce sound. A
good agreement under 2.5 % between the frequencies of the oscillation and the acoustic
pressure emitted by the drop is achieved.

1 INTRODUCTION

Sound produced by multiphase flow can be observed in our daily life, for example
breaking waves, sloshing in a car tank or a water drop falling into a water pool. To
understand the mechanism of the sound producing sources, numerical simulations can be
helpful. Direct noise computations (DNC) solve the compressible Navier-Stokes equations
(NSE) for the aerodynamic and the acoustic field simultaneously [4]. In case of low Mach
numbers, flow and acoustics represent a multiscale problem for which DNC is not efficient.
The cause for the inefficiency are different spatial and temporal resolution requirements
[25]. Different approaches are available to make noise computation more practicable.

One approach is the acoustic/viscous splitting technique [10]. The compressible quan-
tities are decomposed into a superposition of an incompressible part with an acoustic
perturbation (Expansion about Incompressible Flow, EIF). With this method the acous-
tic sources are derived from the incompressible NSE. Shen and Sørenson [19] modified the
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original method from Hardin and Pope [10] by changing slightly the basic decomposition
of the variables. Further Seo and Moon [18] employed linearized compressible perturba-
tion equations for the acoustic computations. Different solver strategies have been used
for the disciplines, e.g. Ali et al. [2] computed the flow field with a finite-volume solver
and the acoustic field with a discontinuous Galerkin approach.

A variety of approaches for numerical simulations of multiphase systems exist. Cano
[7] divides the methods for finite-volume solvers into interface-tracking and interface-
capturing methods. Capturing the interface can be done by front tracking techniques,
level-set methods, marker and cell (MAC) techniques or the volume-of-fluid (VOF) method.
The VOF method is the most popular one because of its mass conservation and the good
handling of topology changes. Difficulties such as sharpness of the interface were tackled
with additional improvements, e.g. by a coupling with the level-set method [15]. In par-
ticular, an accurate interface representation is necessary if surface tension is involved. The
continuum surface force model (CSF) by Brackbill et al. [6] models the surface tension
as a continuous effect across the interface. With the CSF model surface tension can be
approximated in the momentum equations of the incompressible NSE with one additional
term.

Single-phase flow and acoustics have been analyzed thoroughly over the last decades
whereas there is only a few work additionally taking multiphase flow into account. Munz
[14] replaced the incompressible solution with the solution of the compressible NSE at
zero Mach number which takes into account additional physical effects as variable density
or temperature gradients. The sound generation and propagation in two phases were
simulated by Tajiri et al. [21] with the help of a finite difference lattice Boltzmann
method.

In this paper we use a finite-volume framework solving the incompressible NSE ex-
tended by the VOF method for the multiphase flow and the linearized Euler equations
with a high-resolution scheme for the acoustics. Unphysical acoustic sources arise when
simulating moving interfaces. We introduce a solution to this problem by adding an
interface condition to the source term calculation.

The paper is organized as follows: the main equations for multiphase flows, surface
tension and acoustic wave generation and propagation are described in Section 2, following
in Section 3 by the numerical implementation and models. More details on the acoustic
problem in the interface region and its solution is given in Section 4. Two test cases
with moving interfaces and the new approach for the suppression of unphysical acoustic
pressure sources are shown in Section 5. Finally, Section 6 resumes the outcome of this
paper.

2 GOVERNING EQUATIONS AND BASIC ASSUMPTIONS

The equations for calculating acoustics in a finite-volume multiphase framework are
presented in this section. The compressible NSE for Newtonian fluids [17] are the basis

2



Jonas Friedrich and Michael Schäfer

for the fluid dynamics and the acoustics:

∂ρ
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with the density ρ, the velocity vector ui, the pressure p, the external forces fi, the time
t and the Cartesian coordinates xi. Applying the CSF model [6], one gets the volume
forces consisting of the gravitational force and the surface tension:

fi = ρgi + σκni|∇αm|, (3)

with the gravitational acceleration gi, the constant surface tension σ and the unit normal
vector to the multiphase interface ni. The volume-fraction αm is defined as the fraction
of the volumetric amount of one phase m to the entire volume [11]. In this paper only
two phases are considered so that m = 2. A transport equation for the volume-fraction
variable is added to evolve the multiphase flow:

∂αm

∂t
+ ui

∂αm

∂xi
= 0. (4)

Using the one-fluid formulation [16] only one flow field (ui = u1i = u2i ) has to be solved in
which the volume-fraction distinguishes the phases in the Navier-Stokes equations through
the material parameters. As part of the one-fluid formulation the tangential and normal
velocity components at the interface are set equal on both sides. The result of those
assumptions is that there is no slip at the interface and that mass transfer through the
interface is not taken into account.

When surface tension is considered, the curvature κ and the unit normal vector ni in
equation (3) need to be determined. For instance, in a two-dimensional case (x1 = x,
x2 = y) the curvature is described by:

κ = −∇ · ni = −∇ · ∇α
|∇α|

(5)

= −
αxxα

2
y + αyyα

2
x − 2αxαyαxy

(α2
x + α2
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3
2

,

in which the first and second spatial derivatives of the volume-fraction are labeled with
the direction in the subscript.

To derive the acoustic equations the density, the velocity and the pressure are split
into an incompressible (inc) part and an acoustic perturbation (ac) [10].

ρ = ρinc(xi) + ρac, (6)

ui = uinci + uaci , (7)

p = pinc + pac. (8)
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Inserting (6)-(8) into the compressible Navier-Stokes equations (1)-(2) one obtains a sys-
tem of equations for the acoustic density and velocity. The equation for the acoustic
pressure is derived with the speed of sound c =

√
(∂p/∂ρ)S, the time derivative of the

pressure splitting (8) and the acoustic density equation (9). Further insight can be gained
in [3, 9, 12]. The LEE for the acoustic quantities including the source term read as:

∂ρac

∂t
+ ρinc

∂uaci
∂xi

+ uinci
∂ρac

∂xi
= 0 (9)
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∂t
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∂xi
= −∂p
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∂t
. (11)

Note that the density ρinc and the speed of sound c as well as the viscosity µinc depend
on their location due to the multiphase system.

3 NUMERICAL METHODS

If one of the phases moves, the transport equation of the volume fraction (4) has to be
discretized and solved properly. For the temporal discretization a Crank-Nicolson method
and for the spatial discretization the high-resolution scheme M-CICSAM are used [24].

For the curvature estimation in equation (3) an exact and fast method is desirable. In
this paper a hybrid model [26] for the calculation of the spatial derivatives is chosen. The
first spatial derivatives are calculated with a convolution technique [1] and the second
derivatives are approximated with a standard finite differencing scheme. The convolu-
tion of the volume-fraction distribution is done with a K8 kernel [26]. Since the second
derivatives of the kernel need bigger support or rather more computational time it is
advantageous to use here a simpler method.

The acoustic equations (9)-(11) in flux formulation read as

∂U

∂t
+
∂Fi
∂xi

= Q, (12)

with the variable vector
U = [ρac, uaci , p

ac]T , (13)

the fluxes Fi, exemplary shown for F1:

F1 =


uinc1 ρac + ρincuac1
uinc1 uac1 + pac

ρinc

uinc1 uac2
uinc1 uac3

c2ρincuac1 + uinc1 pac

 (14)

and the source term

Q = [0, 0, 0, 0,−∂p
inc

∂t
]T . (15)
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The LEE is transformed into a local coordinate system with the coordinate ξ which is
normal to the cell face. According to that, a one-dimensional problem results for each
cell face:

∂Uξ
∂t

+ A
∂Uξ
∂ξ

= 0. (16)

In (16) the Jacobi matrix A is defined as

A =

uincξ ρinc 0
0 uincξ 1/ρinc

0 c2ρinc uincξ

 (17)

and the variable vector Uξ as
Uξ = [ρac, uacξ , p

ac]T . (18)

Due to locally changing impedance Z(xi) = ρ(xi)c(xi) the underlaying media is referred to
as layered media [13]. Solving a general Riemann problem in this media, a high-resolution
scheme is applied for the acoustic fluxes using Godunov’s method in combination with
the Lax-Wendroff method and a Van-Leer limiter [22].

The source term in (15) is the connection between the NSE and the LEE. Only the
influence of the flow on the acoustics is considered, so that the local change of pressure
causes an acoustic effect. Taking into account multiphase computations this procedure
induces unphysical acoustic sources, which is explained in the next section.

4 PROBLEM WITH MOVING MULTIPHASE INTERFACES

With the methods described in the previous section it was shown that an acoustic wave
hitting a fixed inclined fluid/fluid interface gets refracted and reflected with under 1 %
error [20]. When the interface moves, a problem arises. Consider a stationary drop with
fluid 1 (e.g. water) in a resting fluid 2 (e.g. air), see Figure 1. If gravitational force is
neglected, then equation (2) simplifies to an equilibrium between the pressure derivative
and the surface tension at the interface with

∂p

∂xi
= σκni|∇α|. (19)

This so called jump condition expresses the change of pressure over the interface and is
analytically described by the Young-Laplace equation [5]

∆p = σ

(
1

r1
+

1

r2

)
(20)

with the principal radii of curvature r1 and r2. If the drop and the surrounding fluid have
the same velocity equation (20) still holds. Therefore when the drop moves through a cell
C, this cell will notice a change of pressure from one time step to the next. Regarding
to the source term definition (15), cell C will excite an acoustic source, although in the
whole domain no sources should arise. The values of the pressure and the source term
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Figure 1: Initial concentration distribu-
tion with isoline for α = 0.5 and horizontal
middle line
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Figure 2: Pressure and acoustic source along the
horizontal middle line at t = 0.1 s

along the horizontal line in Figure 1 are shown in Figure 2, in which one can see two
peaks of the source term in the interface region between the two fluids. Because of the
two peaks the drop incorrectly emits sound.

Since the LEE are valid in each phase but not in the region in between, a solution to
overcome this numerical problem is to suppress the sources at the interface. The one-
directional routine in the inhouse solver FASTEST [8] is demonstrated in Figure 3. At
first the incompressible flow field is computed from the NSE followed by the multiphase
advection. With the information of the concentration field one knows in which cells the
interface is located and is then able to set the source term in those cells to zero.

incompressible NSE

Multiphase advection

Cell C = Interface cell ?

−∂p
∂t

(C) 6= 0 −∂p
∂t

(C) = 0

yesno

LEE

Source calculation

Flow calculation

Acoustic calculation

FASTEST

Figure 3: Schematic one-dircetional routine
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5 TEST CASES AND RESULTS

In this section two test cases are shown to validate the method described in Section 4.
The first test is a water drop (fluid 2) inside a duct filled with air (fluid 1) that leads
to a density ratio of ρ1/ρ2 = 0.001 and a viscosity ration of µ1/µ2 = 0.01. A uniform
flow field with a constant velocity in x-direction u = 0.1 m/s is set. The time step
size is ∆t = 2× 10−5 s and the simulation time is T = 0.2 s. The duct has a length
in both directions of 0.05 m and the uniform cell size is ∆h = 7.8125× 10−4 m. The
drop radius is r = 0.005 m and the drop starts at (x, y) = (0.0125, 0.025). Referring to
equation (20) with constant surface tension σ = 0.08 N/m, the exact pressure jump is
∆p = 16 Pa. To focus on the moving interface the curvature and the pressure jump is
kept constant and moreover the speed of sound for both fluids is set to c = 1 m/s. Beside
the inlet on the left side and the outlet on the right side, for the top and the bottom of the
domain symmetric boundary conditions are applied. All four boundary conditions act like
acoustic outlets. Since the constant drop and the background fluid move simultaneously

Figure 4: Acoustic pressure at t = 0.1177 s
with concentration isoline for α = 0.5
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Figure 5: Acoustic pressure at point P

no acoustics should be produced. In Figure 4, the acoustic pressure contour plot is shown
at time t = 0.011 77 s. The sources at the front and the rear of the drop produce acoustic
waves which are emitted into the domain and inside the drop. Waves inside the drop
travel until the opposite side of the interface where they are nearly completely reflected
due to the material parameters of the fluids. Exemplary taking the acoustic pressure
at point P = (0.025, 0.045) over the simulation time, one can see in Figure 5 that the
magnitude is in a range of 10−4.

If the simulation is repeated without the sources of the interface the outcome is as
expected. The magnitude of the acoustic pressure in point P is about 10−17, see Figure 6.
Comparing the two simulations, the regime with the suppressed sources appears as a line
in Figure 7. For this test case suppressing the sources in the interface region leads to
negligible acoustic pressure in the domain.
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Figure 6: Acoustic pressure at point P without
interface sources
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Figure 7: Comparison of acoustic pressure at
point P

While in the first test case a moving interface should not produce sound, the moving
interface in the second test case has to do so. Consider an elliptic drop with two semi-axes
of a = 0.005 m and b = 0.003 m which is located in the center of the domain. The lengths
and discretization are the same as in the first test case. Due to the acting surface tension
the ellipsoid tries to transform into a circle and overshoots into an ellipsoid with the
semi-axes exchanged. The background fluid is at rest and only the elliptic drop oscillates
around his equivalent circle shape. It is expected that the acoustic pressure emitted from
the ellipsoid has the same frequency as the oscillation itself. The simulation parameters
are: ∆t = 3× 10−7 s, σ = 0.08 N/m, ρ1/ρ2 = 1, µ1/µ2 = 1 and T = 0.15 s. The surface
tension is determined with the method described in Section 3 with four cells used for the
kernel of the convolution method. Figures 8 and 9 show the acoustic pressure contour

Figure 8: Acoustic pressure at maximum de-
flection in y-direction with concentration isoline
for α = 0.5

Figure 9: Acoustic pressure at maximum de-
flection in x-direction with concentration isoline
for α = 0.5
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plots at approximately maximum drop deflections. In Figure 8 it can be seen that the
drop emits positive acoustic waves in the y-direction while in Figure 9 positive acoustic
waves travel in the opposite direction. The frequency of the drop oscillation is 60.1 Hz. In
Figure 10 the Fourier analysis of the acoustic pressure is taken at point Q = (0.25, 0.35).
The maximum amplitude occurs at a frequency of 58.6 Hz. The difference between the
frequencies of the drop oscillation and the acoustic pressure is within 2.5 % and therefore
in a good agreement.
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Figure 10: Fourier analysis of acoustic pressure at point Q

6 CONCLUSIONS AND OUTLOOK

An approach for the numerical simulation of acoustics in multiphase flows with mov-
ing interfaces has been presented. The linearized Euler equations are valid for each fluid
in a multiphase phase system but not for the interface region in between. Within the
one-directional finite-volume code consisting of an incompressible Navier-Stokes equa-
tions solver with integrated multiphase advection followed by the acoustic computation,
a condition for the interface is introduced to suppress the unphysical acoustic sources.

Two different cases of moving interfaces have been investigated. In the first case the
interfaces moves locally in the domain but has no relative movement to the background
fluid and therefore should not produce any sound. A drop is sent through a duct with a
constant velocity. Only with the proposed approach the acoustic pressure in the domain
nearly vanishes. The second test case consists of a drop which oscillates due to surface
tension. The background fluid is in rest so that the acoustic pressure emitted from the
drop should have the same frequency. The frequencies are in a range of 2.5 % which is
considered as a very good agreement.

In the next step this methodology will be applied to more complex problems, e.g. a
water drop falling into a water pool.
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