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Abstract. A two-stage fourth order temporal discretization approach is developed for
compressible fluid dynamics in the framework of discontinuous Galerkin (DG) methods.
Different from the classical Runge-Kutta (RK) temporal discretization, we use the two-
stage temporal discretization and take the generalized Riemann problem (GRP) solver
to construct numerical fluxes for better resolution. It turns out that we just need to
solve moments and reconstruct initial data twice at every time step so as to save the
computational cost and decrease the memory footprint. Numerical results verified the
performance of the proposed scheme.

1 INTRODUCTION

High order numerical methods are attractive in the simulation of complex fluid flows
because of their potential in achieving better resolution and accuracy with small cell
numbers, which often leads to save computational cost. As one of the popular high order
schemes, the DG method has been well developed since Cockburn and Shu’s fundamental
contributions [7, 8, 9, 10, 30]. This method has many advantages over other methods such
as the compactness, parallelization, feasibility to complex geometries and adaptivity, etc,
as pointed out in [30], where a wide range of references about the DG method can be
also found. The temporal discretization and related solvers for numerical fluxes are two
fundamental ingredients in the DG method. Our idea will be introduced by analyzing the
existing methods from these two aspects.

The temporal discretization methods for the DG methods usually can be divided into
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two types: (i) The Runge-Kutta type and (ii) The Lax-Wendroff type. Traditional Runge-
Kutta methods [7, 8, 9, 10] are the most popular since they are easy to implement and
require low-storage. It can also be designed to be strong stability preserving (SSP).
However, only Riemann solvers are applied to obtain numerical fluxes with first order
temporal accuracy. The low-storage and TVD (total variation diminishing) Runge-Kutta
methods require many stages to increase degrees of freedom resulting in considerable
communication overhead and increasing computational cost. Furthermore explicit Runge-
Kutta methods with positive SSP coefficients cannot be more than fourth-order accurate
[26].

The Lax-Wendroff type DG methods [12, 25] have optimally low-storage, and contain
minimal communication overhead for hyperbolic problems by updating unknowns at only
one stage. They use approximate high order Riemann solvers (such as the ADER method
[33]) to obtain high order numerical fluxes directly. However, one needs to have access to
high order time derivatives of the unknowns for a Lax-Wendroff method. After producing
the Jacobian of the flux function, the next time derivative produces the Hessian of the
flux function. Further derivatives require tensors which grow vastly in size which will
make the implementation more complicate, especially in higher dimensions.

In order to combine the advantages of the Runge-Kutta type and the Lax-Wendroff
type methods, a two-stage fourth order temporal discretization is introduced to the DG
method in this paper. This temporal discretization for an ordinary differential equation
yt = L(y) is explained below.

Algorithm. The two-stage fourth order algorithm

(i) Compute intermediate values at t∗ = tn +
1
2
∆t

y∗ = yn +
1

2
∆tL(yn) +

1

8
∆t2

∂

∂t
L(yn), (1)

(ii) Evolution of the solution at a full step step

yn+1 = yn +∆tL(yn) +
1

6
∆t2

(

∂

∂t
L(yn) + 2

∂

∂t
L(y∗)

)

. (2)

This discretization method belongs to multi-derivative time integrators which have a long
history of development for ordinary differential equations [5, 19, 22, 23], and yet to date,
only a small subset of these methods have been explored as a tool for solving partial
differential equations, especially for hyperbolic conservation laws [11, 27, 32]. This large
class of time integrators includes all popular multi-stage Runge-Kutta as well as single-
step Lax-Wendroff methods.

1. Like Lax-Wendroff methods, multi-derivative integrators permit the evaluation of
higher derivatives of the unknowns in order to decrease the memory footprint and
communication overhead.
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2. Like traditional Runge-Kutta methods, multi-derivative integrators admit the addi-
tion of extra stages, which introduce extra degrees of freedom that can be used to
increase the order of accuracy or modify the region of absolute stability [6].

The solvers chosen for computing the numerical fluxes are related with the temporal
discretization method. For the existing schemes (including the Runge-Kutta type and
the Lax-Wendroff type), approximate solvers are mostly used which will partially lose
some important physical information. In this paper we will choose the second order GRP
solver. This choice is crucial since the governing equation is effectively used so that all
physical information is incorporated into the numerical flux construction and the residual
evaluation. In principle, the ingredient agrees with that in the Lax-Wendroff method
and thus the resulting scheme produces physically admissible and stable approximate so-
lutions. Of course, due to the presence of discontinuities in the solutions, the tracking
technique of those discontinuities is adopted so that even very strong waves could be cap-
tured well. The GRP solver was first proposed in [1] and this first original version was
based on the Lagragian framework. The systematic description with various applications
was published in the monograph [2]. The direction Eulerian version was proposed for
shallow water equations in [16], for gas dynamical system in [3], and general hyperbolic
conservation laws in [4]. The GRP solver is also refined to illustrate how the thermody-
namical variation is integrated into the design of high resolution methods for compressible
fluid flows and demonstrate numerically the importance of thermodynamic effect in the
resolution of strong waves [17]. More developments can be found in [15, 24, 18].

Finally let us remark the features of this new two-stage fourth order GRP-DG algo-
rithm.

1. For multi-derivative time integrators, use at most two-derivatives is optimal and
fundamental for hyperbolic conservation laws to retain portability, that is the two-
stage fourth order case. Beyond two-derivatives, the many-derivative time integra-
tors start to lose their portability.

2. Compared to the classical Runge-Kutta approach to achieve fourth order accuracy,
we just spend two steps to complete one time level evolution so that at least com-
putational time 50% are reduced in the process of the data reconstruction.

3. By analytically solving the generalized Riemann problems for the numerical fluxes,
a close coupling between the temporal and spatial evolution is introduced so that
the resolution can be improved. The following numerical example (Fig. 1) in our
previous work [34] verifies our viewpoint. The second order GRP-DG method per-
forms better than the second order Runge-Kutta DG method with exact Riemann
solver.

This paper is organized in four sections. Besides the introduction section here, a two-
stage fourth order GRP-DG method is formulated in Section 2 with the second order GRP
solver. In Section 3, several numerical examples are provided to display the performance
of the proposed schemes. Finally we present a conclusive discussion in Section 4. The
details of the GRP solver can be found in the Appendix A.
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Fig. 1: The Shu-Osher problem. 400 cells are used. The second order GRP-DG method
compares with the second order Runge-Kutta DG method with exact Riemann solver.

2 The two-stage fourth order GRP-DG methods for hyperbolic conservation
laws

In this section we present how to implement the two-stage temporal discretization
for the DG method. We will focus on the one-dimensional case in this paper and the
two-dimensional case will be introduced in coming days.

The one-dimensional case of hyperbolic conservation laws reads

ut + f(u)x = 0. (3)

The computational interval I = [a, b] is divided into sub-cells Ij , j = 1, · · · , N . Denote
the space of polynomials of degree at most k over Ij by P k

j (x), x ∈ Ij , and

V k
I =

{

vh ∈ L∞(I);vh|Ij ∈ P k(Ij), j = 1, · · · , N
}

. (4)

As a fourth order DG scheme is considered in this paper, k is chosen to be 3. Then we
define an approximate solution uh(x, t) in Ij,

uh(x, t) =
k

∑

ℓ=0

Cℓ
j(t)φ

j
ℓ(x), x ∈ Ij , (5)

where {φj
ℓ} is the Legendre orthogonal basis of P

k
j in Ij and normalized so that φj

ℓ(xj+ 1

2

) =

1, φj
ℓ(xj− 1

2

) = (−1)ℓ. Those basis functions are taken for P k
j as

φj
0 = 1, φj

1(x) =
2

∆xj

(x− xj), φj
2(x) =

6

∆x2
j

(x− xj)
2 −

1

2
,

φj
3(x) =

20

∆x3
j

(x− xj)
3 −

3

∆xj

(x− xj), ...
(6)

Then we plug (5) into the weak form of (3) over Ij, by taking the test functions as φj
ℓ(x),

to obtain

d

dt
Cℓ

j(t) = −
αℓ

∆xj

(f̂j+ 1

2

φj
ℓ(xj+ 1

2

)− f̂j− 1

2

φj
ℓ(xj− 1

2

))

+
αℓ

∆xj

∫

Ij

f(uh(x, t))
d

dx
φj
ℓ(x)dx = 0, ℓ = 0, · · · , k,

(7)
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where f̂j+ 1

2

is the numerical flux through the cell boundary x = xj+ 1

2

at time t, and αℓ are

αℓ =
∆xj

∫

Ij
[φj

ℓ(x)]
2dx

, α0 = 1, α1 = 3, α2 = 5, α3 = 7, · · · . (8)

It turns out that we have the system for Cℓ
j, ℓ = 0, 1, · · · , k,

dC0
j(t)

dt
= −

1

∆xj

[f̂j+ 1

2

− f̂j− 1

2

],

dC1
j(t)

dt
= −

3

∆xj

[f̂j+ 1

2

+ f̂j− 1

2

] +
6

∆x2
j

∫

Ij

f(uh(x, t))dx,

dC2
j(t)

dt
= −

5

∆xj

[f̂j+ 1

2

− f̂j− 1

2

] +
60

∆x3
j

∫

Ij

f(uh(x, t))(x− xj)dx,

dC3
j(t)

dt
= −

7

∆xj

[f̂j+ 1

2

+ f̂j− 1

2

] +
21

∆x4
j

∫

Ij

f(uh(x, t))(20(x− xj)
2 −∆x2

j )dx,

· · ·

(9)

The integrals in (9) can be evaluated using the Gauss-Lobatto quadrature since the end-
point values of integrands are used. For example, we approximate,

1

∆xj

∫

Ij

f(uh(x, t))dx =
1

k(k + 1)
(f̂j− 1

2

(t) + f̂j+ 1

2

(t)) +
k

∑

p=1

χpf(uh(xp, t)), (10)

where xp is the (p− 1)st zero of the Legendre polynomial L′

k−1(x) and χp is the weight

χp =
∆xi

k(k + 1)[Lk−1(xp)]2
, xp 6= xj− 1

2

, xj+ 1

2

. (11)

Thus the right-hand side of (9) can be regarded as functions of t so that (9) is an ODE
system as long as the numerical flux f̂j+ 1

2

can be defined and uh(xi, t) can be precised for
interior points xi. The latter is easy to determine because the solution is smooth so that

∂uh

∂t
(xi, t) = −

∂f(uh(xi, t))

∂x

∣

∣

∣

∣

x=xi

, xi 6= xj− 1

2

, xj+ 1

2

. (12)

It remains to determine f̂j+ 1

2

. This is achieved through solving the generalized Riemann
problem, subject to initial data

u(x, tn) =

{

uh(x, tn), x ∈ Ij,
uh(x, tn), x ∈ Ij+1.

(13)

Then we obtain

un
j+ 1

2

:= lim
t→tn+0

u(xj+ 1

2

, t),

(

∂u

∂t

)n

j+ 1

2

:= lim
t→tn+0

∂

∂t
u(xj+ 1

2

, t). (14)

5
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The procedure obtaining the values in (14) is named the GRP solver [3]. We refer to
Appendix A for details. Intrinsically, the temporal derivative (∂u/∂t)n

j+ 1

2

is replaced by

the spatial derivative at time t = tn using the governing equation (3),

(

∂u

∂t

)n

j+ 1

2

= − lim
t→tn+0

∂

∂x
f(u(xj+ 1

2

, t)). (15)

where the spatial derivative should be taken upwind. This approach is called the Lax-
Wendroff approach numerically or the Cauchy-Kovalevskaya approach in the context of
PDE theory.

Once the instantaneous values in (14) are available, we can define the following values
within second order accuracy for 0 < α < 1,

f̂j+ 1

2

(tn + α∆t) = f(utn+α∆t

j+ 1

2

), utn+α∆t

j+ 1

2

:= un
j+ 1

2

+

(

∂u

∂t

)n

j+ 1

2

α∆t,

f(uh(xi, tn + α∆t)) = f(utn+α∆t
h,i ), utn+α∆t

h,i = uh(xi, tn) +
∂uh

∂t
(xi, tn)α∆t

(16)

Similarly, we can define the values after time level t = t∗. Thus we can implement our
two-stage algorithm for (9), for which we denote symbolically

dCj(t)

dt
= Lj(uh(t), t), (17)

and by uh(t) all possible values involved in (9) at time t.

Algorithm-1D.Two-stage GRP-DG for 1-D hyperbolic conservation laws.

Step 1. Computation of intermediate values. Update the intermediate values uh(x, t∗)
at t = tn +

1
2
∆t in the following,

C∗

j = Cj(tn) +
∆t

2
Lj(uh(tn), tn) +

∆t2

8

∂

∂t
Lj(uh(tn), tn). (18)

Then we reconstruct uh(x, t∗) and subsequently obtain values u∗

j+ 1

2

, (∂u
∂t
)∗
j+ 1

2

and
∂uh

∂t
(xi, t∗).

Step 2. Advancing of solutions from tn to tn+1. Advance the solution to the time level
t = tn +∆t,

Cj(tn+1) = Cj(tn) + ∆tLj(uh(tn), tn) +
∆t

6

[

∂

∂t
Lj(uh(tn), tn) + 2

∂

∂t
Lj(uh(t∗, t∗))

]

.

(19)
Thus uh(x, tn+1) is reconstructed and subsequently un+1

j+ 1

2

, (∂u
∂t
)n+1
j+ 1

2

and ∂uh

∂t
(xi, tn+1)

are obtained. Back to Step 1 until the time is up.

6
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This is exactly a two-stage method. At each stage, we need to modify Cℓ
j in order to

avoid oscillations. This modification is achieved using a shock-capturing limiter proposed
by [21].

Remark We stick to the utilization of the time derivative (∂u/∂t)n
j+ 1

2

, which is one of

central points in our algorithm. Indeed, the fully explicit form of (3) is,

ūn+1
j = un

j −
∆t

∆xj

[

1

∆t

∫ tn+1

tn

f(u(xj+ 1

2

, t))dt−
1

∆t

∫ tn+1

tn

f(u(xj− 1

2

, t))dt

]

. (20)

It is crucial to approximate the flux in the sense that

Numerical flux at xj+ 1

2

−
1

∆t

∫ tn+1

tn

f(u(xj+ 1

2

, t))dt = O(∆tr), r > 0. (21)

Many algorithms approximate the flux with error measured by ∆u, the jump across the
interface,

Numerical flux at xj+ 1

2

−
1

∆t

∫ tn+1

tn

f(u(xj+ 1

2

, t))dt = O(‖∆u‖r). (22)

which is not proportional to the mesh size ∆xj or the time step length ∆t when the jump
is large,

‖∆u‖ 6≈ O(∆xj). (23)

It turns out that there is a large discrepancy when strong discontinuities are present in
solutions. In order to overcome this difficulty, we have to solve the associated generalized
Riemann problem (GRP) analytically and derive the value (∂u/∂t)n

j+ 1

2

and subsequently

(∂u/∂t)∗
j+ 1

2

.

3 Numerical Examples

In this section we provide several examples to validate the performance of the proposed
approach. The examples include linear and nonlinear scalar conservation laws and 1-D
Euler equations. The order of accuracy will be tested. All results are obtained with CFL
number ν = 0.12. Let us compare it with the data from [27] (Table 1).

CFL number ν νmax

SSP-RK3-DG (3 stages) 0.125 0.13
SSP-RK4-DG (10 stages) 0.44 0.45
TVRK4-DG (2 stages) 0.08 0.085
2stage-GRPDG 0.12 0.1225

Table 1: The comparison of the CFL numbers for different versions of DG methods

7
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The SSP-RK3-DG method is the optimal third order SSP method developed by Shu
and Osher [28] and described by Gottlieb and Shu [14]. SSP-RK4-DG is a fourth-order,
low-storage method with ten stages developed by Ketcheson [20]. TVRK4-DG is the
two-stage DG method with approximate Riemann solvers (TVRK4) introduced by Seal
[27]. The maximum allowable CFL number, νmax is near the maximum possible stable
time step that each method permits for fourth-order spatial accuracy. SSP-RK4 has a
much higher CFL limit when compared to either TDRK4 or SSP-RK3 or 2stage-GRPDG
because it incorporates many more stages, but each stage requires expensive applications
of limiters. Although TVRK4-DG shares the same temporal discretization with 2stage-
GRPDG, it is interesting that using an exact high order Riemann solver will help us to
loose the CFL constraint.

3.1 Scalar conservation laws

Example 1. The first example is a linear equation with a periodic boundary condition,

ut + ux = 0, u(x, 0) = sin(πx). (24)

The solution is computed over the interval [−1, 1]. This example is applied to test that
our scheme can reach expected fourth order accuracy (see Table 2).

N L1 error order L∞ error order
20 0.2176e− 04 - 0.1680e− 04 -
40 0.1348e− 05 4.013 0.1045e− 05 4.007
80 0.8352e− 07 4.012 0.6530e− 07 4.001
160 0.5203e− 08 4.005 0.4079e− 08 4.001
320 0.3246e− 09 4.002 0.2547e− 09 4.001
640 0.2027e− 10 4.001 0.1592e− 10 4.000

Table 2: Numerical Accuracy Test for Example 1

Example 2. The second example is taken for the Burgers equation with a periodic
boundary condition [7],

ut + (u2/2)x = 0, u(x, 0) =
1

4
+

1

2
sin(πx). (25)

The solution is smooth up to the time t = 2/π and develops a shock that moves to interact
with a rarefaction. Numerical examples at t = 0.4 [Fig. 2(a)], t = 2/π [Fig. 2(b)] and
t = 1.5 [Fig. 2(c)] are compared with the exact solutions by using 160 cells. Table 3
shows the L1 and L∞ errors and numerical order of the new scheme at t = 0.4. A high
order limiter is only applied for the cases t = 2/π and t = 1.5.

8
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N L1 error order L∞ error order
20 0.8743D − 05 - 0.3355D − 04 -
40 0.6102D − 06 3.841 0.2093D − 05 4.002
80 0.3886D − 07 3.973 0.1639D − 06 3.675
160 0.2449D − 08 3.988 0.1243D − 07 3.721
320 0.1563D − 09 3.970 0.8796D − 09 3.821
640 0.9914D − 11 3.979 0.6024D − 10 3.868

Table 3: Numerical Accuracy Test for Example 2
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(c) t = 1.5

Fig. 2: The numerical results for the Burgers equation at different times.
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3.2 One-dimensional Euler equations

In this part we provide several examples for compressible Euler equations,

u = (ρ, ρv, E)⊤, f(u) = (ρv, ρv2 + p, v(E + p))⊤, (26)

where ρ is the density, v is the velocity, p is the pressure and E = ρ(1
2
v2 + e) is the total

energy, e = p

(γ−1)ρ
is the internal energy for polytropic gases. γ = 1.4 for all cases.

Example 3. Smooth problem In order to varify the numerical accuracy of the present
high-order scheme for the Euler equations, we check the numerical results of the smooth
problem whose initial data is





ρ
v
p



 =





1 + 0.2sin(x)
1
1



 . (27)

From Table 4 we could see that the present scheme reaches the designed order.

N L1 error order L∞ error order
20 0.1486D − 05 - 0.34420D− 06 -
40 0.9769D − 07 3.927 0.2347D − 07 3.874
80 0.6102D − 08 4.001 0.1497D − 08 3.970
160 0.4006D − 09 3.929 0.9925D − 10 3.915
320 0.2443D − 10 4.035 0.6080D − 11 4.029
640 0.1529D − 11 3.999 0.3813D − 12 3.995

Table 4: Numerical Accuracy Test for Example 3 at t = 2π

Example 4. The Sod problem This example was proposed in [31] to model a shock
tube problem. The initial data is take as

(ρℓ, vℓ, pℓ) = (1.0, 0.0, 1.0), for 0 < x < 0.5,
(ρr, vr, pr) = (0.125, 0.0, 0.1), for 1 > x ≥ 0.5.

(28)

100 cells are applied to show the numerical results compared with the exact solution
(Fig 3).

Example 5. The Shu-Osher problem This example was proposed in [29] to model
shock-turbulence interactions. The initial data is take as

(ρℓ, vℓ, pℓ) = (3.857143, 2.629369, 10.333333), for x < −4,
(ρr, vr, pr) = (1 + 0.2 sin(5x), 0, 1), for x ≥ −4.

(29)

10
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Fig. 3: The Sod problem: 100 cells are used

We can find out that results computed by 200 cells is comparable with the one computed
by 300 cells which is enough to describe the detailed structures (Fig 4).
Example 6. The Woodward-Colella problem This test is the Woodward and Colella
problem. The initial conditions in the present computation are the following:

(ρℓ, vℓ, pℓ) = (1.0, 0.0, 1000.0), for 0 < x < 0.1,
(ρm, vm, pm) = (1.0, 0.0, 0.01), for 0.1 < x < 0.9,
(ρr, vr, pr) = (1.0, 0.0, 100.0), for 0.9 < x < 1.

(30)

600 cells are used to show the numerical results for the present scheme compared with
the results by using 3200 cells (Fig 5).

4 Conclusion

This paper proposes a two-stage fourth order accurate temporal discretization of the
DG method for hyperbolic conservation laws based on the GRP solver. The particular
applications are given for compressible fluid dynamics. A number of numerical examples
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Fig. 4: The Shu-Osher problem: 200 (left) and 300 (right) cells are used
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Fig. 5: The Woodward-Colella problem: 600 cells are used
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are provided to validate the accuracy of the scheme and its computational performance
for complex flow problems.

The resulting two-stage fourth order GRP-DG scheme is different with the existing DG
schemes. A two-stage time discretization which belongs to the multi-derivative integrators
combines the advantages of the Runge-Kutta and the Lax-Wendroff methods. It reduces
the reconstruction compared with the Runge-Kutta method and avoid to compute large
matrixes compared with the Lax-Wendroff method. Thus the computational cost is saved
and the memory footprint and communication overhead are decreased. Furthermore,
the GRP solver improves the resolution for capturing discontinuities as the governing
equations are effectively used for the numerical flux reconstruction. It is interesting that
the GRP solver also can help us to loose the CFL constraint. However, the performance
of the proposed scheme for two-dimensional cases is needed to be studied.

A The GRP solver

This part includes the GRP solver just for completeness and readers’ convenience. The
details can be found in [3] for the Euler equations and [4] for general hyperbolic systems,

ut + f(u)x = g(u, x), (31)

where g(u, x) is a source term. This paper only focuses on the homogeneous case,
g(u, x) ≡ 0.

A.1 1-D GRP

The 1-D GRP solver assumes that the initial data consist of two pieces of polynomials,

u(x, 0) =

{

u−(x), x < 0,

u+(x), x > 0,
(32)

where u±(x) are two polynomials with limiting states

uℓ = lim
x→0−0

u−(x), ur = lim
x→0+0

u+(x);

u′

ℓ = lim
x→0−0

u′

−
(x), u′

r = lim
x→0+0

u′

+(x).
(33)

The GRP solver has two versions: (i) Acoustic version; (ii) Genuinely nonlinear version.

A.1.1 Acoustic GRP

The acoustic GRP deals with weak discontinuities or smooth flows and assumes that

‖uℓ − ur‖ ≪ 1. (34)

However, we emphasize that the difference u′

ℓ − u′

r is not necessarily small. Then we
denote by

u0 ≈ uℓ ≈ ur, (35)

13
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and linearize (3) around u0 as

ut + A(u0)ux = 0, A(u0) :=
f(u0)

∂u
. (36)

Then the instantaneous time derivative of u is computed as,
(

∂u

∂t

)

0

:= lim
t→0+0

∂u

∂t
(0, t) = −[RΛ+R−1u′

ℓ +RΛ−R−1u′

r], (37)

where Λ = diag(λ1, · · · , λm). Here λi, i = 1, · · · , m are the eigenvalues of A(u0), R is the
(left) eigenmatrix of A(u0), Λ

+ = diag(max(λi, 0)), Λ
− = diag(min(λi, 0)). The acoustic

GRP is named as the G1 scheme in the series of GRP papers.

A.1.2 Genuinely nonlinear GRP

As the jump at x = 0 is large, the acoustic GRP is not sufficient to resolve the resulting
strong discontinuities. Any “rough” approximation is dangerous since the error is mea-
sured with the jump ‖ur−ur‖, which is not proportional to the mesh size in the practical
computation and results in large numerical discrepancy. Therefore, we have to analyt-
ically solve the associated generalized Riemann problem (31)-(32) as the “genuinely”
nonlinear GRP version, which is named as the G∞ GRP. This version is interpreted as
the Lax-Wendrofff approach plus the tracking of strong discontinuities.

Here we include the resolution of GRP (31)-(32) for the Euler equations (26). The
instantaneous value u0 is obtained by the Riemann solver and (∂u/∂t)0 is obtained by
solving a pair of algebraic equations essentially,

aℓ

(

∂v

∂t

)

0

+ bℓ

(

∂p

∂t

)

0

= dℓ,

ar

(

∂v

∂t

)

0

+ br

(

∂p

∂t

)

0

= dr,
(38)

where the coefficients ai, bi, di, i = 1, 2, are given explicitly in terms of the initial data
(32), and their formulae can be found in [3].

Since the variation of entropy s is precisely quantified, the instantaneous time derivative
of the density is then obtained using the equation of state p = p(ρ, s),

dp = c2dρ+
∂p

∂s
ds. (39)
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