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Abstract. The present paper aims at investigating a high-order time integration method
with an appropriate error estimator in the context of an induction heating process. There-
fore, an axisymmetric model problem of a metal shaft with a surrounding copper coil is
investigated. In order to describe the proceeding a thermo-electromagnetic multifield
problem is introduced. MAXWELL’s equations are coupled and linked to the heat conduc-
tion equation due to JOULE’s effect. The coupling of the nonlinear MAXWELL equations
and the heat conduction equation results in a monolithic multifield problem. The result-
ing equations are discretized using high-order accurate finite elements in space as well
as in time. Finally, the time discretization error is estimated and classified employing a
residual error estimate.

1 MOTIVATION

In order to achieve application-optimized material properties, new material composites
or novel fabrication sequences are developed. Thus, in the area of metal-forming processes,
heating and cooling strategies that locally influence workpiece characteristics such as
ductility, hardness, yield strength or impact resistance, are important concepts. Hence,
a special profile of characteristics can be adapted to the intended load profile of the
component. For example, high strength can be achieved at a predetermined position, while
particularly good wear or damping properties predominate in other places. The tailor-
made combination of properties has been realized in the past by a variety of different
materials or extensive manufacturing processes. For components made with just one
metal, precisely defined properties can be obtained in the following three stages, see
Figure 1. In this integrated manufacturing process, a metal shaft obtains a heterogenous
temperature distribution throughout a local inductive heating. Then the heated metal
shaft is formed in a press and simultaneously cooled due to the contact with the die.
Finally, the desired material properties are achieved by partial rapid cooling, allowing the
creation of graded materials with defined properties, cf. [20]. Investigations and studies
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Figure 1: Integrated thermomechanical forming process, cf. [20]

with respect to high-order time integration methods for this process chain can be found
in [9, 10, 18, 3].

The first step of this fabrication sequence will be analyzed, acknowledging that a ma-
terial gradation is only enabled due to the inhomogeneous temperature distribution ob-
tained by inductive heating. The prediction of this process step will be realized by solving
MAXWELL’s equations as well as the heat conduction equation using GALERKIN’s method
with high-order accurate approaches in space and time in conjunction with an adequate
error estimator.

Nevertheless, in literature a bunch of other solution strategies are available. Within
the analysis of electromagnetic phenomena they emerge from different formulations of
MAXWELL’s equations and contain extraordinary element approaches, cf. [1, 6]. A pop-
ular time integration scheme for solving the semidiscrete balance equation for electro-
magnetic problems is the time integration method of CRANK NICHOLSON, cf. [1, 4, 11].
Similarly, the classical implicit Euler method, cf. [11], or other finite-difference-based
approaches, cf. [7], are used to solve the problem.

On the contrary in the area of linear heat conduction discontinuous and continuous
GALERKIN methods can be found for time integration, cf. [14]. Since an analytical
solution of this coupled thermo-electro multfield problem can not be obtained easily,
appropriate tactics for estimating the various prevailing discretization errors have to be
established. Existing approaches consider TAYLOR series expansions, energy evaluations,
dual problem formulations, residual error determination and error definitions exploiting
both the h- as well as p-version of GALERKIN’s method, cf. [13, 19, 2, 8, 15]. Moreover,
the residual error estimator, which was originally proposed by [2], will be adapted and
analyzed within the context of the inductive heating problem.

2 The Thermo-Electromagnetic Equations

Electromagnetic phenomena are generally depicted by MAXWELL’s equations. They
are a set of partial differential equations in space and time. These equations deal with
electric and magnetic aspects, including their interaction. Since the electric and magnetic
fields vary in time, reciprocal actions are induced. The following four time- and space-
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dependent vector fields are introduced:

V - D(X,t)= pr(X,t) VX €Qp, Vet T, (1)
V - B(X,t) = 0 VX eQp, Vte]tT], (2)
VxH(X,t)=J©,X,t)+D(X,t) VXeQpp VtelT), (3)
Vx E(X,t) = —B(X.,t) VX €Qpg, Ve ltT] (4)

The variable E represents the electric field intensity, D the electric flux density, H
the magnetic field intensity, B the magnetic flux density, pr the electric charge density
in a volume and J the electric current density in a surface. Those variables can be
dependent on the temperature ©, the spatial position X and the time ¢. Some of the
variables included in the MAXWELL equations are not independent of each other; they
are connected, assuming the following constitutive laws, [5].

D(X,t) = e¢E(X,t) VX €Qp, VEE [ty T (5)
B(X.,t) = u(©)H(X,1) VX € Qp, V€ [t T] (6)
J(O,X,1) = o(@EX,t)+Ji(X,t) V¥XeQp Ve lt,T] (7)

Here, € = €peg represents the permittivity, consisting of the constant electric permittivity
in a vacuum ¢y and a material-dependent part eg. The magnetic permeability © = popugr
can also be determined with the help of the constant vacuum-specific value py and a
material dependent part ug. The quantity o describes the electric conductivity.

The temperature development of the inductive heating process can be described by the
heat conduction equation

p (@) OX, ) +V-q(O0,X,1)=Q(0,X,t) VX e, Ve[t (8)

Further introduced variables are the density p, the heat capacity ¢, the heat flux vector
q(0,X,t) = —\(©) VO(X 1), the heat source term () and the thermal conductivity A.

In general, in an inductive heating process a metal workpiece is surrounded by an
induction coil, on which an alternating current is applied, cf. [17]. Due to the alternating
current density, the magnetic vortex field is generated, which induces eddy currents.
These, in turn, produce a temperature increase in the workpiece. This phenomenon is
called JOULE heating and can be described by the heat equation (8) with the heat source
term

J*(0,X,t) 9

@) (9)
As seen above, the coupling between the electric and the thermal field is clearly visible
by means of the heat source term. On the other hand, the electromagnetic field is not
directly coupled to the thermal field. The thermal influence on the electromagnetic field is
caused by the temperature dependence of the material parameters within the constitutive
laws (5) - (7). The material dependent material models, which are used for studies in the
present paper, can be found in [9].

Q(O,X,1) =
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3 NUMERICAL REALIZATION
3.1 WEAK FORMULATION OF INDUCTIVE HEATING

In order to enable the application of the finite element method, the previously elabo-
rated partial differential equations (1) - (9) as well as the NEUMANN boundary conditions
have to be formulated weakly throughout a multiplication with arbitrary test functions JE,
0B or 00 and an integration over the volume 2. Furthermore, the strategy of DEMKOW-
1cz and Assous, cf. [6, 1] is applied in the thermo-electromagnetic case with nonlinear
material parameters, [9]. This lead to the following weak form of the electric, magnetic
and thermal fields:

SWE= [6E-¢E dV+ | SE-0(©)E dV+ | 6E-5(©) EdV — | V-6E "2 gv
[rmeB o] / [eo
+/m(@)[vXaE}-[vXE]d\/+/[W(@)x5E]-[V><E]dV
Q Q
+ [6E-£(©)[VxB]dV + | §E-[Vi(©)x Bl dV+ | 6E-J; dV (10)
/ / /

+/V-5Em(@)V‘EdV+/5E-[n><[V><E]] dA =0,
Q T g

SWB = [6B-¢eBdV+ [[Vx6B]-Kk(©)[VxB|]dV— [B-Vxa®EFEdV
[omremas] /

Q
+/[V><53]-[V/<a(®)><B]dV—i—/V-éBn(G))V-BdV (11)
Q Q
—/[VXaB] -JidV+/5B-[n><[V><B]]dA:O,
Q L' B
SW® = [60pc,(©)0dV— [ V6O -q(0)dV — | §6 Q dV (12)
/ / /

+ /5@ [¢" + a(©)[0 — O] +2(0) 0o A [0 —05]] dA = 0.
Iq
The dependencies of the variables with respect to the spatial position and time are
omitted for simplicity.

Since high temperatures occur in the inductive heating process and heat exchange with
the environment occurs, equation (12) considers free convection and thermal radiation.
The heat transfer coefficient «(©) as well as the emissivity £(0) have temperature de-
pendent behaviors. The material dependent material models, which are used for studies
in this paper, can be found in [9]. Furthermore, the STEFAN-BOLTZMANN constant og is
introduced.

Adding equations (10) - (12) results in the weakly formulated nonlinear problem

W (u, u, u) = 0, with u = [E, B,©]T. (13)

4
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Therein the vector u = [E, B, ©]" of primary variables is introduced together with its time
derivatives to obtain this abridged form, which will also be advantageous for the compact
formulation of spatial and temporal integration schemes later on. A Newton-Raphson
method is considered for this nonlinear problem (13). Consequently, the consistent lin-
earization of the virtual work §W (13) is realized by developing a TAYLOR series expansion
up to the linear term, which means that higher order terms are omitted. Thus, the weak
form is linearized, exploiting the GATEAUX derivative, cf. [12].

To complete the initial value problem for the induction heating, adequate initial condi-
tions at the beginning of the observation at time ¢y in the domain {2 have to be complied.

U(XJ tO) - ;l'."()? 'U,<X7 tO) = i"Oa U(X7 tO) = U (14-)
3.2 SPATIAL DISCRETIZATION

In order to solve the thermal-electromagnetic problem numerically the next step is to
discretize the weak form spatially by using the finite element method. Due to the spatial
discretization the whole domain 2 is divided into several finite elements e. The distinct
continuous field variables are thus described with the help of discrete nodal values and
vector-valued shape functions N| = N'e;. They consist of LAGRANGE shape functions
N' of polynomial degree p with i € [1, NN], cf. [21], and accompanying basis vectors
e;, which enable the approximation of different spatial directions I € [1, ND]. In the

case of three different spatial directions standard cartesian bases vectors e; = [1,0,0]7,
e; =[0,1,0]” and ez = [0,0, 1]7 are considered.
) NN ND . NN ND NN ND
E@~) > EI'N(§), E@©~) Y E'N(E), BEE~)Y > E'NE) (15)
i=1 1=1 i=1 I=1 =1 =1
.. NN ND .o . - NN ND . .
B(&)~> > BI'N(©), B(§)~) > BIN(€), (16)
=1 =1 i=1 1=1
. NN o NN ’
O)~) ~ ON(E), O@)~) ON(E). (17)
i=1 i=1

The vector & represents the natural coordinates and the superscript ¢ embodies the node
values i of the element e. Moreover, the nodal quantities (15) and (17) are summa-
rized in the vector u® = [Eei, B, @ei} and its time derivatives. The insertion of those
approximations in equation (13), the integration over the element domain Q¢ via the
GAUSS-LEGENDRE quadrature, the assembly over all elements and the application of the
fundamental lemma of variational calculus leads to the linearized semidiscrete system of
equations

MAu + DAu + KAu = r—rjy (18)

The matrices M, D and K contain entries of the electric, magnetic and thermal field
with respect to the second, first and zeroth time derivative. The outer flux vector is
described by r and the inner flux vector by ry. Au, Au and Au are the increments of
the variables and its time derivatives.
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3.3 TEMPORAL DISCRETIZATION

For the numerical time integration of the linearized semidiscrete initial boundary value
problem (18) the time interval of interest ¢ € [to, 7] is subdivided into NT' constant or
adaptively controlled time intervals [t,,t,.1] with n € [0, NT| and the time step size
At = t, 1 — t,. Between two subsequent time intervals [t, 1,t,] and [t,,t,.1] the conti-
nuity conditions of the primary variable u and its time derivative u

u,] = ul —u® =0, w,]=ul —u’ =0, 19
[[ ]] n n n n

are formulated as the difference of the right and left limiting values of the associated
state variables at the time interval boundary, cf. [13]. The discontinuous formulations
of GALERKIN time integration schemes satisfy these continuity conditions (19) in a weak
sense, which means that nodal values of the primary variable u and its time derivative
u suffer from jumps across the boundaries. On the contrary the continuous GALERKIN
methods fulfill the continuity in a strong fashion, cf. [15].

The transformation of the semidiscrete equilibrium equation (18) into the temporal
weak form is accomplished by multiplication with an arbitrary vector valued weight func-
tion w(t) as well as its time derivative w(¢) and the integration over the time interval
[tn, tnt1], cf.[13]. The continuity condition (19) at the time element boundary is only
weakly enforced by using the weight w! = w(t,,) for the continuity of the primary variable
u and the derivative of the weight w' = w(t,) for the derivative of the primary variable
u. Finally, the weak formats of the equation of motion and the continuity conditions are
added using the weight matrices A, and A,.

tni1
SW — / W - [MAii + DAG + KAu + 1y — 1] dt (20)
tTL

+ WA wh AW W AAut F WA AR =00 (21)

These weight matrices are introduced to balance the summarized weak forms and to
align their physical units, cf. [13, 16]. For the numerical solution of the weak form (20)
approximations for state variables, test functions and their time derivatives are introduced
in dependence of a natural time coordinate & € [—1, 1], cf. [16].

pe+1 pe+1 pt+1

u(é) ~ Z Ny(Ew',  a(g) ~ Z Nie)w,  u&) ~ Z N7(&) v’ (22)

pe+1 pe+1
W& ~ Y NG W, wE) & Y NG W (23)
j:l j:l

The approximations of the increments are carried out in the same way. Thus, one di-
mensional shape functions, GAUSS points and weights can be applied as in the standard
spatial finite element method. A more detailed derivation for linear systems of equations
of second order in time can be seen in [8] and nonlinear systems of equations of the first
order in time are introduced in [16].
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3.4 ERROR ESTIMATION

As a substantial ingredient of reliable time integration methods, local a-posteriori error
measures are developed. For example, simultaneously performed time integrations of
distinct accuracy based on the h-method can provide a local time integration error. These
comparable solutions are calculated by using a smaller time step size At/m with m €
2,3,...], cf. [15]. It is worth to mention that this error measure is on the one hand very
reliable but on the other it require a very high numerical effort. Consequently, it is not
very useful in practical applications.

g up Uy Up+1
> > >O—p

€1 €n En+1

Figure 2: Illustration of the functionality of the residual error estimator

In order to formulate an efficient error estimate, the residual error estimate, origi-
nally proposed by BABUSKA & RHEINBOLDT [2] for the error estimation of the spatial
finite element method, is adapted to the discontinuous and continuous GALERKIN time
integration schemes.

1

€n = /[r(u(§t)) — Ty (W), 1(&e), u(&))] [T dé (24)

-1

The advantage of this error estimator is, that the residual error doest not require com-
parative calcultions, because the direct use of the calculated variables 11,1 and u in the
nonlinear equation of motion yields the absolute error in the time interval, see Figure 2.
In addition, it can also be decided whether the residual error of each field or of the whole
problem is determined. Consequently, this error will be subject to further investigation.

Scalar valued relative error measures are obtained by dividing the Lo-norm of the error
vector e, ;1 by a reference value e,.s. For example, the outer flux vector can be used as a
reference.

1
o= () 13t o = ] 2
2

4 SIMULATION OF INDUCTIVE HEATING PROCESS
4.1 NUMERICAL EXAMPLE OF A STEEL SHAFT

As a numerical example for the above deduced theory the inductive heating process
of a 51CRV4 shaft, see Figure 3, with three rings as induction coil will be examined.
Therefore, a sinusoidal current with an amplitude I = 1231 A and a frequency [ =
8100 Hz will be applied to each of the induction rings. The initial temperature as well
as the bulk temperature are © = 25°C. Due to the changing current, the evolution
of the electromagnetic and thermal field is calculated. Spatial discretization is realized
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Figure 3: a) Axisymmetric depiction of the shaft, b) section of the shaft with coordinates (r, z), c)
dimensions (in millimeters) of the model and d) DIRICHLET and NEUMANN boundary conditions

by quadrilateral LAGRANGE finite elements of polynomial degree p = 2. Furthermore,
the present example is used to study the family of discontinuous p;-GALERKIN time
integration scheme with respect to robustness and order of accuracy. The necessary
temperature dependent material parameters of the steel, air and copper are given in [10].

4.2 ELECTROMAGNETIC-THERMAL SOLUTION

Figure 4 shows an exemplary result of the electric, magnetic and thermal field. Therein
it can be seen, that the electric and magnetic waves spread symmetrically starting at
the induction coils and their influence decreases in all directions. While the magnetic
field effects the whole steel shaft, the electric field penetrates the steel shaft only in the
outer layer. Moreover, within certain time intervals almost the entire middle part of
the steel shaft is effected by the electric field and consequently also by the source term
distribution. In Figure 5 the evolution of the temperature distribution over the course
of time is depicted. Figure 6 demonstrates the solution (Point is indicated as a blue
dot in Figure 3 c) ) of the field variables and its time derivatives. The lowest possible
temporal polynomial degree is p; = 2, which means that the primary variables are of
quadratic nature, the first time derivative has a linear approximation and the second
time derivative maintains a constant value throughout each time element. It can be
seen, that the solution of the field variables and its time derivatives are improved with
a decreasing time step size. The jumps between the time elements decreases also with a
decrease in the time step size. Figure 7 illustrates with an increasing polynomial degree
an improvement of the quality of the solutions. A significant improvement can be seen
in the second time derivative, because a linear approximation is now reached. Also a
significant drop in the jumps between the polynomial degrees can be observed.
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Figure 4: The electric field F, the magnetic field ||B|| and the temperature field © at time t = 30us
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Figure 5: Chronological sequence of the temperature distribution in the steel shaft.
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4.3 ERROR ANALYSIS

The improvement in the solutions with a decreasing time increment an/or the polyno-
mial degree can also be confirmed with the help of the residual error estimator. Figure
8 illustrates the residual error for the quadratic (left) and cubic (middle) approach. It
can be seen, that the error becomes smaller with the time step size and it decreases for
the same time increment with an increase of the temporal polynomial degree. The local
order of convergence can be seen on the right hand side in Figure 8. The discontinuous
GALERKIN methods demonstrate for different polynomial degrees a local order of O(At?),
O(At*) and O(A#®). The residual error estimator of the discontinuous GALERKIN method
has with the initial outer flux vector r(t = ty) as the reference (25) measure accordingly
a local order of convergence of O(At?*™!) . Thus, the residual error estimator provides a
global order of convergence of O(A#P*).

5 CONCLUSION

In this paper the residual error for the inductive heating process with the GALERKIN
method was shown. Therefore, the MAXWELL equations and the heat conduction equation
were derived for the coupled electric, magnetic and thermal field. In the next step the p
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Figure 6: Time sequence of the field varialbes and their time derivatives using the discontinuous
GALERKIN method dG(2)
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Figure 7: Time sequence of the field varialbes and their time derivatives using the discontinuous
GALERKIN method dG(3)

finite element method was used for spatial discretization and discontinuous p;-GALERKIN
time integration schemes were presented within a generalized framework. Solutions of the
inductive heating process for the electromagnetic and thermal field were demonstrated.
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Figure 8: Residual error of dG(2) (left) and dG(3) (middle) of all fields added together and plotted over
time for different time step sizes and local order of convergence for different polynomial degrees (right)

Additionally, numerical studies were carried out to show the dependency of the conver-
gence rate on the polynomial degree p; and the time step size At. These analyses have
demonstrated that the applied GALERKIN time integration schemes lead to robust and
higher order accurate numerical simulations of induction heating. Furthermore, the ability
of the present BABUSKA & RHEINBOLDT type error estimator to predict the time inte-
gration error and, consequently, the convergence rate of the investigated time integration
methods was illustrated.

REFERENCES

1]

Assous, F., Ciarlet, P., Labrunie, S. and Sergé, J. Numerical solution to the time-
dependent Maxwell equations in axisymmetric singular domains: The singular com-
plement method. Journal of Computational Physics. (2003) 191:147-176.

Babusgka, I. and Rheinboldt, C. A-posteriori error estimates for the finite ele-
ment method. International Journal for Numerical Methods in Engineering. (1978)
12:1597-1615.

Birken, P., Gleim, T., Kuhl D. and Meister A. Fast Solvers for Unsteady Thermal
Fluid Structure Interation. International Journal for Numerical Methods in Fluids
(2015) 79:16-29.

Ciarlet, P. Jr. Augmented formulations for solving Maxwell equations. Computer
Methods in Applied Mechanics and Engineering. (2005) 194:559-586.

Beck, R., Deuflhard, P., Hiptmair, R., Hoppe, R.H.W. and Wohlmuth, B. Adaptive
multilevel methods for edge element discretizations of Maxwells equation, Surveys of
Mathematics for industry. (1995).

Demkowicz, L. Computing with hp-adaptive finite elements: Volume 1: One and two
dimensional elliptic and Mazwell problems. (2007) Chapman & Hall/CRC Applied
Mathematics and Nonlinear Science Series.

Elsherbeni, A. and Demir, V. The Finite Difference Time Domain for Electromag-
netics: With Matlab Simulations. (2008) SciTech Publishing Incorporated.

11



Tobias Gleim! and Detlef Kuhl?

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Gleim, T. and Kuhl, D. Higher order accurate discontinuous and continuous p-
Galerkin methods for linear elastodynamics. Zeitschrift fir angewandte Mathematik
und Mechanik. (2013) 93:177-194.

Gleim, T. Simulation of Manufacturing Sequences of Functionally Graded Structures.
kassel university press, (2017).

Gleim, T. and Kuhl, D. Electromagnetic Analysis Using Higher Order Numerical
Schemes in Space and Time. Archives of Computational Methods in Engineering
(2018) https://doi.org/10.1007 /s11831-017-9249-9.

Hoffman, J. Adaptive Finite Element Methods for the Unsteady Mazwell’s Equations.
Chalmers University of Technology (2000).

Holzapfel, G. A. Nonliner Solid Mechanics. John Wiley & Sons, (2000).

Hughes, T.J.R. and Hulbert,G.M. Space-time finite element methods for elastody-
namics: Formulations and error estimates. Computer Methods in Applied Mechanics
and Engineering (1988) 66:339-363.

Jamet, P. Galerkin-Type Approximations which are Discontinuous in Time for
Parabolic Equations in a Variable Domain. SIAM Journal on Numerical Analysis.
(1978) 15:912-928.

Kuhl, D. Modellierung und Simulation von Mehrfeldproblemen der Strukturmechanik.
Shaker Verlag, (2004).

Kuhl, D. and Meschke, G. Numerical analysis of dissolution processes in cementitious
materials using discontinuous and continuous Galerkin time integration schemes.
International Journal for Numerical Methods in Engineering. (2007) 69:1775-1803

Rudnev, V., Loveless, D., Cook, R. and Black, M. Handbook of Induction Heating.
Marcel Dekker Inc, (2003).

Schrder, B. and Kuhl, D. Small strain plasticity: classical versus multifield formula-
tion. Archive of Applied Mechanics (2015) 85, pp. 1127-1145.

Stein, E. Error-controlled Adaptive Finite Elements in Solid Mechanics. John Wiley
& Sons Ltd, (2003).

Steinhoff, K., Weidig, U. and Saba, N. Investigation of Plastic Forming Under the In-
fluence of Locally and Temporally Variable Temperature and Stress States. In: Func-
tionally Graded Materials in Industrial Mass Production, Verlag Wissenschaftliche
Scripten, (2009).

Zienkiewicz, O.C and Taylor, R.L. The Finite Element Method. McGraw Hill, Vol.
L., (1989).

12



	18gleim_eccm

