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Abstract. A higher-order accurate fictitious domain method (FDM) is proposed based
on higher-order background meshes and multiple level-set functions for the definition of
the domain of interest. Elements cut by the zero-level sets are decomposed into higher-
order sub-elements conforming to the implied boundaries. Integration points are placed
in those sub-elements belonging to the domain. Boundary conditions are enforced using
Lagrange multplier or penalty methods. Ill-conditioned systems of equations are avoided
using negligible material parameters in the void regions. The resulting FDM is compared
to the conformal decomposition FEM (CDFEM) as both methods share the decomposition
of cut elements. Higher-order convergence rates are obtained with for both methods.

1 INTRODUCTION

In the context of solving boundary value problems, it is well-known that the domains
of interest may be described explicitly (e.g., as in computer aided geometric design using
NURBS [7, 27]) or implicitly based on the level-set method [25, 24, 31]. Herein, the level-
set method is used and multiple level-set functions are employed to describe complex
domains. For the analysis, a non-conforming background mesh is used as a starting
point into which the domain is completely immersed. Two different procedures are then
investigated: The first relies on the automatic generation of suitable conforming meshes
leading to the conformal decomposition finite element method (CDFEM). The second
path is to employ the elements and shape functions implied by the background mesh
in the sense of a fictitious domain method (FDM). In particular, the aim is to achieve
higher-order accurate approximations of boundary value problems, herein in the context
of linear elasticity.

For both approaches, the accurate decomposition of the elements cut by the zero-level
sets into higher-order sub-elements is a crucial step. This has been outlined in previous
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works, e.g., in [12, 23, 11, 9, 14, 13]. In FDMs, these sub-elements are used for integration
purposes only, as shape functions are generated from the background mesh. In the CD-
FEM, these sub-elements replace the original background elements and directly provide
basis functions and degrees of freedom. For the decomposition, (i) cut background ele-
ments are identified, (ii) the positions of the zero-level sets are reconstructed by interface
elements, and (iii) sub-elements are generated on both sides.

Some previous works on the CDFEM include [22] in a low-order context and [11]
for higher orders. In the CDFEM, the resulting sub-elements are combined to yield a
regular, conforming, higher-order mesh. For the success, adaptive refinements of the
background mesh are crucial to handle complex level-set data where the decomposition
may fail without refinements. To avoid ill-shaped elements, nodes of the background mesh
which are too close to zero-level sets are (slightly) moved following [19, 16, 14, 11]. Once
the mesh is automatically generated, a classical p-FEM analysis is conducted.

There is a rich body of literature in methods related to FDMs: the unfitted or cut
finite element method [4, 5, 3, 15], finite cell method [1, 8, 26, 29, 30], Cartesian grid
method [33, 34], immersed interface method [17], virtual boundary method [28], embedded
domain method [20, 21] etc. The important difference between the CDFEM and FDMs
is that the first uses the shape functions of the decomposed elements in the conforming
mesh as the approximation basis whereas the second employs the shape functions of
the original background mesh and uses the sub-elements for integration purposes only.
Next to the accurate integration in cut elements, major challenges in FDMs are: The
imposition of boundary conditions along the inner-element boundaries of the domain
and the conditioning of the resulting system of equations. For the boundary conditions,
we use Lagrange multipliers or the penalty method which are well-known approaches
for enforcing general constraints. To ensure well-conditioned systems of equations, a
negligible Young’s modulus is prescribed in the void regions as, e.g., suggested in the
finite cell method [8, 26, 30]. One may also possibly use stabilizations similar to those
suggested in [4, 5, 3, 15] which, however, are beyond the scope of this work.

The paper is organized as follows: In Section 2, the concept of implicit geometry
descriptions based on multiple level-set functions is outlined. The process of identifying
cut elements, reconstructing the zero-level sets by interface elements, and decomposing
cut elements into sub-elements is outlined which is relevant for both, the CDFEM and
FDM. The CDFEM is described in Section 3 and the proposed variant of the FDM in
Section 4. Numerical results are presented in Section 5 and higher-order convergence rates
are achieved. Finally, the paper ends with a summary and conclusion in Section 6.

2 RECONSTRUCTION AND DECOMPOSITION

This section describes the shared starting point for the CDFEM and FDM described
below and closely follows [12, 23, 11, 9, 14]. Consider a domain of interest Ω in two dimen-
sions which is fully immersed in a background mesh composed by (possibly unstructured)
higher-order Lagrange elements. The boundary of the domain is implied by the zero-
contours of level-set functions φi (x). The level-set functions are evaluated at the nodes
of the background mesh and, in between, interpolated by φh

i (x) based on classical finite
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(a) plate with
hole

(b) cantilever beam (c) spanner

Figure 1: Zero-level sets (blue lines) in 2D and the implied geometries Ω (gray areas) of a (a) plate with
hole, (b) cantilever beam, and (c) spanner.

element shape functions. The signs of the level-set functions define sub-regions in the
background mesh and k level-set functions may define up to 2k subregions. Based on the
sign-combinations of the involved level-set functions, one may easily identify void regions
or parts of the domain Ω. See Fig. 1 for some examples which are later considered in the
numerical results. It is also seen that several level-set functions naturally imply corners
and edges of the domain of interest [13, 10]. Consequently, a purely implicit description
of complex geometries of practical interest is possible using multiple level-set functions.

The task is to decompose the background mesh into higher-order sub-elements which
conform to the zero-level sets, i.e., to the boundary of Ω. This is done successively with
respect to all level-set functions in an element-wise fashion. For each level-set function,
the following steps are performed in every reference background element, see Fig. 2(a)
and references [12, 13, 11] for further details:

1. Detection whether the element is cut by the current level-set function or not. There-
fore, the nodal values are interpolated on a sample grid. The element is cut if dif-
ferent signs of the level-set values at the grid points are detected. For cut elements
proceed with step 2, otherwise with the next element.

2. Based on the sample grid and moderately complex level-set data, determine how the
zero-level set cuts the element and classify the topological cut situation. Otherwise,
for complex level-set data (e.g., defining multiple, unconnected zero-level sets within
the element, or zero level-sets which leave and re-enter the element), refining the
background elements recovers valid situations, as discussed below.

3. Reconstruction: In the reference element, identify the zero-level set (representing
parts of the boundary) and define interface elements. Therefore, element nodes
are identified on the zero-level set along specified search paths for which a tailored
Newton-Raphson scheme is employed. The definition of such search paths and the
corresponding start values for the iteration are crucial for the success.

4. Decomposition: Decompose the reference element based on the reconstructed inter-
face element wherefore customized mappings of sub-elements are employed depend-
ing on the topological cut situation.

3



T.P. Fries et al.

map integration points and

shape functions isoparam.
map integration points

to sub-elements

evaluate ref. shape functions

w.r.t. background element

standard 

Gauss points
FDM

(c) Procedure in the fictitious domain method (FDM).

decompose reference

background element

reference

sub-elements

(b) Procedure in the conformal decomposition FEM (CDFEM).

map nodes of sub-elements

isoparametrically

Place integration points and evaluate

shape functions w.r.t. sub-elements

standard 

Gauss points

CDFEM

reconstruct zero-level set

in ref. background element

(a) Reconstruction and decomposition

as a shared starting point.

Figure 2: Schematic overview of the procedure: (a) The shared starting point is the reconstruction and
decomposition of the reference background elements. (b) In the CDFEM, the sub-elements are mapped
to the physical background element and treated as standard finite elements. (c) In the FDM, the sub-
elements are only needed in the reference background elements to place integration points. Then shape
functions of the background nodes are evaluated and mapped to the physical domain.

3 CONFORMAL DECOMPOSITION FINITE ELEMENT METHOD (CD-
FEM)

In the CDFEM, the task is to generate a regular, higher-order mesh composed by the
(sub-)elements that conform to all zero-level sets and are part of the domain of interest
Ω. Therefore, the resulting sub-elements in the reference background elements from step
4 (see above) are mapped to the physical domain, see Fig. 2(b). By “regular” mesh,
we refer to the desired property not to allow hanging nodes which, otherwise, would
require additional measures in the context of FE analyses. This is naturally achieved
only provided that (i) the background mesh is regular and (ii) all decompositions (in the
background elements) are successful.

However, the decomposition described above may fail in elements where (a) the level-
set data is too complex to obtain valid topological cut situations, (b) the identified nodes
on the zero-level set are outside the element, or (c) the Jacobian of a decomposed sub-
element (in the reference or physical background element) may be negative, hence, invalid.
Then, the background mesh is adaptively refined until the decomposition is successful.
The regularity of the background mesh, i.e., the absence of hanging nodes must be ensured
because this, in turn, also ensures the regularity of the resulting conforming mesh. That
is, the failure to decompose a certain background element requires an adaptive refinement
of this element also affecting neighbor elements to avoid hanging nodes. Adaptivity may

4



T.P. Fries et al.

(a) Mesh for CDFEM (b) Mesh for FDM

Figure 3: Resulting example meshes (of order 3) used for the (a) CDFEM and (b) FDM for the example
of a plate with hole.

also be useful to better resolve geometry features or improve the approximations. The
interplay between decomposition and adaptivity is further outlined in [11].

It is thus found that the overall decomposition of the background mesh with respect to
all level-set functions, leading to a regular, conforming mesh of sub-elements is a major
implementational challenge. Of course, the advantage is that, once successful, such a
mesh is used as in classical p-FEM analyses. It is noted that the resulting meshes are
mixed in the sense that they feature triangular and quadrilateral elements in one mesh. If
this is undesired, one may easily convert them to meshes composed by one element type
only. Furthermore, it is mentioned that to avoid ill-shaped elements, it is recommended to
(slightly) modify the nodes of the underlying background mesh such that they are not too
close to the zero-level sets which is outlined in [14, 23]. Fig. 3(a) shows an automatically
generated, conforming mesh for the CDFEM for the example of a plate with hole.

4 FICTITIOUS DOMAIN METHOD (FDM)

The decomposition in the reference background elements according to Section 2 is also
needed for the FDM. Then, based on these sub-cells, integration points are mapped to
the reference background elements and the background shape functions are evaluated
there, see Fig. 2(c). Integration points and shape functions are mapped to the physical
background elements. In order to improve the conditioning of the resulting system of
equations, it is useful to consider a “virtual” material inside the void regions with a
negligible Young’s modulus E? following [8, 26, 30].

In order to consider boundary conditions (weakly), Lagrange multipliers or the penalty
method is employed. Therefore, an integration along the corresponding boundary seg-
ments is required (falling into Dirichlet and Neumann parts). This is trivial in the CD-
FEM as it is the same than in classical FEM analyses. In the FDM, it is found useful
to have the full CDFEM-mesh available because—in addition to defining the integra-
tion sub-cells—this naturally represents a discretization of the boundary which is, for the
FDM, within elements. For enforcing the constraints in the FDM one has to (i) integrate
along the element boundaries of the CDFEM-mesh, (ii) evaluate the lower-dimensional
CDFEM-shape functions on the trace of the boundary, and (iii) evaluate shape functions
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of the background mesh.

5 NUMERICAL RESULTS

Applications in linear elasticity are considered herein. The corresponding governing
equations are found in many text books, e.g., [2, 35]. These equations are not repeated
here and also the formal enforcement of boundary conditions via Lagrange multipliers or
the penalty method can be considered standard.

The test cases considered herein follow those presented in [11] where further details
are found. The test cases either feature analytical solutions or overkill approximations
have been generated to extract benchmark quantities such as the stored elastic energy.
In the first case, errors are measured in the L2-norm of the displacements, εu, and in the
second, the convergence of the stored elastic energy to the benchmark result is observed,
εΠ = Πh − Πoverkill. The condition numbers κ are computed using Matlab’s condest-
function. The negligibly small Young’s modulus prescribed in void regions is labelled E?

implying some “virtual” material.

5.1 Square shell with circular hole

A square shell with dimensions [−1, 1] × [−1, 1] is considered with a circular void re-
gion of radius R = 0.7123. Plane strain conditions are assumed with Young’s modulus
E = 1000 and Poisson’s ratio ν = 0.3. The exact solution is found in [32, 18, 6]. The corre-
sponding displacements are prescribed along the outer boundary of the domain, the inner
boundary to the void is traction-free. Because the outer boundary is conforming in the
CDFEM just as for the FDM, see Fig. 3, nodal values may be directly prescribed without
using Lagrange multipliers or the penalty method. Background meshes in [−1, 1]× [−1, 1]
with quadrilateral and triangular elements of different orders are considered. For the
convergence study, the number of elements, nd, per dimension of the background mesh
is systematically increased and nd = {6, 10, 20, 30, 50, 70, 100} elements are used with
varying orders between 1 and 6.

Results are shown in Fig. 4. The upper sub-figures show the approximation errors εu
and the lower sub-figures the corresponding condition numbers κ. It is seen in Figs. 4(a)
and (d) for triangular elements that when the void region is completely neglected (E? = 0),
κ is very high but, nevertheless, optimal convergence rates are achieved. For quadrilateral
elements in Figs. 4(b) and (e), κ is even worse and convergence rates are disturbed for
elements with higher order than 3. Therefore, it is useful to assign the virtual Young’s
modulus E? = 10−7 to the void region: As can be seen in Figs. 4(c) and (f), this clearly
bounds κ and still enables optimal convergence rates up to ε ≈ 10−9. The effect of E? on
εu and κ is further investigated in Fig. 5. Obviously, κ is better for higher E? but εu is
better for lower E?. As long as direct solvers are employed, already very small values for
E? are acceptable for the conditioning and yield very accurate results. It is noted that the
results for the CDFEM are found in [11]: Optimal convergence rates are achieved there
with significantly smaller condition numbers than for the FDM (with E? = 0).
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Figure 4: Plate with hole test case: (a), (b), and (c) show approximation errors εu, (d), (e), and (f) the
corresponding condition numbers κ.
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Figure 5: Plate with hole test case: (a) approximation errors εu, and (b) condition numbers κ for
5th-order triangular elements and various values for the virtual Young’s modulus E? inside the hole.
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(a) Mesh for CDFEM

(b) Mesh for FDM

Figure 6: Cantilever beam: example meshes (of order 3) for the (a) CDFEM and (b) FDM.

5.2 Cantilever beam

A cantilever beam with length L = 5.0 m and a variable thickness between h = 0.2 m
and 0.4 m is considered. The beam features several elliptical voids and the detailed geom-
etry definition is given in [11], see Fig. 6 for the domain and example meshes used in the
CDFEM and FDM. The material is composed of steel with E = 2.1·108 kN/m2 and ν = 0.3.
The beam is loaded by gravity acting as a body force of fy = −78.5 kN/m3 and a vertical
traction on the right end. This traction is distributed in a quadratic profile being zero at
the upper and lower right side and reaching a maximum of σy = −100 kN/m in between,
leading to a force resultant of Fy = −26.6̄ kN. The beam is fixed along the boundary of
the left elliptical hole leading to smooth solutions and enabling higher-order convergence
rates. The Lagrange multiplier method yields extremely high condition numbers where-
fore we prefer the penalty method here. The stored elastic energy may be determined
by an overkill solution and is Πoverkill = 0.02361112384 ± 10−10 kNm. Convergence re-
sults are shown in Fig. 7 using E? = 0.01: Higher-order convergence rates are found and
the condition numbers are bounded as expected. For this more advanced geometry, the
convergence curves are not as smooth as for the previous test case.

5.3 Spanner

Next, the geometry shown in Fig. 8 is considered and refers to a spanner being very
similar to normed spanner geometries defined in DIN 895. The geometry is embedded
into a universal mesh composed by triangular elements of different orders. 11 level-set
functions are employed to define the geometry, see [11] for the detailed definitions. The
material is again composed by steel with E = 2.1 · 105 N/mm2 and ν = 0.3. The beam is
loaded by gravity acting as a body force of fy = −78.5 · 10−6 N/mm3 and a traction at the
end of the handle. This traction acts in parallel direction of the handle and is distributed
linearly between −100N/mm at the bottom side and +100 N/mm on the top side. It loads
the handle of the spanner with a resulting bending moment of Mz = 38400 Nmm. All
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Figure 7: Cantilever test case: (a) stored energy errors εΠ, and (b) condition numbers κ for E? = 0.01
and the penalty method with α = 1018.

(a) Mesh for CDFEM (b) Mesh for FDM

Figure 8: Spanner: example meshes (of order 3) for the (a) CDFEM and (b) FDM.

nodes on the two straight, parallel sides of the mouth are fixed. It is clear that singular
stresses have to be expected at all reentrant corners so that only first order convergence
rates may be expected for this test case. Again, there is no analytical solution available
wherefore the stored energy is used for the convergence study. An overkill solution yields
Πoverkill = 61.49248 ± 10−4 Nmm. Fig. 9 shows convergence results in εΠ and condition
numbers using the penalty method with α = 1012. The fictitious Young’s modulus E? is
set to 1.0 and the expected convergence rates are obtained. Results for the CDFEM are
presented in [11].

6 CONCLUSIONS

A fictitious domain method is presented which is based on the accurate integration
in elements cut by (multiple) zero-level sets. This is achieved by generating conforming
higher-order sub-elements (through reconstruction and decomposition in cut elements)
which are used as integration cells in the FDM. In an alternative method called CDFEM,
these sub-elements rather play the role of typical finite elements and imply basis functions.
In the FDM presented, boundary conditions are enforced preferably by the penalty method
which turned out to be more robust than using Lagrange multipliers. Conditioning issues
are addressed by assigning a virtual material in the void regions with negligible material
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Figure 9: Spanner test case: (a) stored energy errors εΠ, and (b) condition numbers κ for E? = 1.0 and
the penalty method with α = 1012.

parameters.
We find that using the virtual material in void regions in combination with the penalty

method possibly yields the most simple version of a FDM. Although it is found that
higher-order convergence rates can be achieved with this simplistic setting, it is more
consistent to enforce (i) boundary conditions based on Nitsche’s method and (ii) solve
conditioning issues by stabilization. The resulting FDM is then basically a CutFEM
[4, 5, 3, 15] which shall be combined with our higher-order accurate integration schemes
in future works.
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