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Abstract. We present two different homogenization based approaches to upscaling the
liver perfusion at the lobular level. The first one consists in homogenization of the meso-
scopic structure with the double-porosity medium represented by the Darcy flow model
with large contrasts in the permeability. The second perfusion model is based on the
two-level homogenization of the fluid-structure interaction with a scaling ansatz related
to the viscosity is applied. Both the models are compared in terms of their macroscopic
responses. Beyond the scope of this paper, for both the approaches the corresponding
extensions accounting for the tissue deformation have been derived.

1 INTRODUCTION

Understanding of liver perfusion on the multiple scales is crucial for the surgical treat-
ment (liver resections, transplantations), but also for understanding how the liver per-
fusion is modified by diffuse parenchyma diseases such as cirrhosis, steatohepatitis, or
the sinusoidal obstruction syndrome. The liver parenchyma is organized by the lobular
structure constituted by the sinusoidal porosity separating the so-called vertex and cen-
tral veins. Existing studies of the liver microcirculation [3, 2], i.e. perfusion between the
portal track and the central vein at lobular level, usually consider the conception of the
regular hexagonal liver lobulus as the hepatic functional unit, see e.g. [9, 4].

We have developed two homogenized models relying on different assumptions and up-
scaling approaches. The first one is derived by the homogenization of the mesoscopic
structure with the double-porosity medium represented by the Biot model with large
contrasts in the permeability, cf. [1]. In the sinusoidal porosity, the scaling of the perme-
ability leads to the macroscopic model involving two pressure fields associated with the
portal and hepatic vascular compartments. The poro-viscoelastic coefficients involved in
the time convolution integrals are obtained by the homogenization of the quasistatic Biot
model, whereby time convolution integrals yield the fading memory effects. The macro-
scopic model is featured by the fading memory effects inherited from the time convolution
integrals, cf. [5, 6]
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The second perfusion model is an extension of our recent work [8], to account for
deformations and the 3 compartment mesoscopic topology. Two-level homogenization of
the fluid-structure interaction with a scaling ansatz related to the viscosity is applied.
The macroscopic model is defined in terms of the pressure field associated with flow in
the liver sinusoids, and the two velocity fields associated with the precapillary vessels
of the portal and hepatic vein systems. Interface conditions relevant to the mesoscopic
scale are obtained along with the mesoscopic model comprising the Darcy flow in the
dual (sinusoidal) porosity and the Stokes flow model in the mesoscopic channels (the
precapillary vessels of the portal and hepatic venous systems). To consider the influence of
deformation of the perfusion, so far this model has been extended for the two-compartment
topology only, see [7].

In this paper, we illustrate and compare properties of the two models, the Darcy-
Brinkman model and the double-permeability Darcy model, using selected examples with
the representative periodic cell describing the lobulus of the liver tissue. A sensitivity
study related to the mesoscopic geometry is reported. The numerical results are computed
using the FE method implemented in the SfePy software (see http://sfepy.org).

Figure 1: Lobular porous structure parameterized by ε, the characteristic size of the
sinusoidal porosity, and δ which describes the size of the mesoscopic heterogeneities.

2 THE DARCY–BRINKMAN MODEL

The model derived in [8] for the two-compartment mesoscopic topology has been ex-
tended for three compartments corresponding to the lobular structure.

2



Eduard Rohan, Jana Turjanicová and Vladimı́r Lukeš

2.1 Micromodel and two-level homogenization strategy

The hierarchical porous material occupying open bounded domain Ω ⊂ R3 is character-
ized by two scales related to two small parameters ε and δ, see Fig. 1. At the mesoscopic
scale the periodic structure is formed by channels represented by domain Ωδ

F occupied by
fluid, and by the microporous material Ωδ

1 = Ω \ Ωδ
F . In particular, domain Ωε,δ

1 ⊂ Ωδ
1

represents micro pores occupied by fluid, whereas Sε,δ = Ωδ
1 \ Ωε,δ

1 is the skeleton.
The fluid domain Ωδ

F is constituted by two mutually disconnected channel systems
Ωδ

2 and Ωδ
3 representing the precapillary vasculature, thus Ωδ

F = Ωδ
2 ∪ Ωδ

3. The domain
occupied by the fluid is

Ωε,δ = Ωε,δ
1 ∪ Ωδ

F ∪ Γδ , where Γδ = Ωε,δ
1 ∩ Ωδ

F . (2.1)

Obviously Γδ = Γδ2 ∪ Γδ3 consist of two disjoint parts, Γδβ = Ωε,δ
1 ∩ Ωδ

β, β = 2, 3.
The micropores form a periodic structure generated by the representative cell εY ,

whereby Y =]0, 1[3 (in general, Y can be a parallelepiped in R3) and ε is proportional to
the size of pores. Y is decomposed into the solid part S ⊂ Y and the fluid part Y ∗ = Y \S,
thus Sε,δ is generated as the periodic lattice by the representative skeleton εS. At the
mesoscopic level the structure is generated by the periodic cell δZ, where Z =]0, 1[3 is
constituted by microporous part situated in Z1 ⊂ Z and by the fluid part ZF = Z \ Z1;
as an extension to work [8] we consider two subdomains Zβ ⊂ ZF , β = 2, 3, such that
Z2∩Z3 = ∅ and ZF = Z2∪Z3; further, by ΓZ = Z1∩ZF we denote the interface consisting
of two disjoint parts, ΓZ = Γ2

Z ∪ Γ3
Z . This decomposition of the representative cell at the

mesoscopic level (the lobular level) will be adopted in Section 3

2.2 Micromodel and the high contrast in the fluid viscosity

The size of the channels (mesoscopic pores) is proportional to δ. For given scale
parameters ε and δ, the flow of an incompressible viscous fluid is described by the Stokes
problem governed by the following equations:

−∇ ·
(
µε,δe(uε,δ)− pε,δ

)
= f , in Ωε,δ

1 ∪ Ωδ
F ,

uε,δ = 0 , on ∂Sε,δ ∪ ∂Ω ,

∇ · uε,δ = 0 , in Ωε,δ
1 ∪ Ωδ

F ,

(2.2)

where uε,δ is the fluid velocity, e(uε,δ) = 0.5(∇uε,δ + (∇uε,δ)T ) is the velocity strain, pε,δ

is the pressure, and the viscosity µε,δ is given by piece-wise constant function according
the micropore size ε:

µε,δ =

{
ε2µ1 in Ωε,δ

1 ,
µF in Ωδ

F .
(2.3)
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2.3 The mesoscopic model

The mesoscopic flow is governed by the following equations obtained by the asymptotic
analysis (ε→ 0, whereas δ being fixed, see [8]) of the system (2.2) with the viscosity (2.3),

−∇ · µ−1
1 K (∇p1 − f ) = 0 , in Ω1 ,

−µF∇2uβ +∇pβ = f , in Ωβ , β = 2, 3 ,

∇ · uβ = 0 , in Ωβ ,

uβ = 0 , on ∂Ω ,

n [1] · u1 := −µ−1
1 K (∇p1 − f ) · n [1] = −n [β] · u2 , on Γ ,

n [β] · (µFe(uβ)− pβ) = −p1n
[β] , on Γβ ,

(2.4)

where u1 = −µ−1
1 K (∇p1 − f ) is the mesoscopic flow in the microporosity. Hence we

obtain the interface conditions on Γ; the following conditions are deduced from (2.4)5,6,

n [β] · (uβ − u1) = 0 , β = 2, 3 ,

pβ − p1 = µFe(uβ) : n [β] ⊗ n [β] ,

t · ∂nuβ + n · ∂tuβ = 0 ,

(2.5)

denoting by t a unit vector in the tangential plane of Γ, i.e. n · t = 0, where ∂n = n · ∇
and ∂t = t · ∇. It is worth to note that this condition is obtained as the byproduct of the
1st level homogenization step without any restriction on the curvature of Γ.

2.4 The 2nd level homogenization

The macroscopic model of the perfusion is obtained by the asymptotic analysis with
respect to the characteristic scale δ → 0 of the mesoscopic problem (2.4). Below we
present the local problems for characteristic responses which constitute the homogenized
coefficients involved in the macroscopic problem. The resulting equations and expressions
were obtained using the approach developed in [8].

2.4.1 Local mesoscopic problems

The following autonomous problems are imposed in the two parts of the mesoscopic
representative volume: problem (2.6) describes the characteristic pressure response of the
sinusoidal porosity, while the problems (2.7) provide the characteristic flow in the portal
and hepatic precapillary channels.

• Find πk, ψk,β ∈ H1
#(Z1)/R, such that

∼
∫
Z1

1

µ1

K∇zπ
k · ∇zq = − ∼

∫
Z1

1

µ1

K∇zzk · ∇zq , ∀q ∈ H1
#(Z) ,

∼
∫
Z1

1

µ1

K∇zψ
k,β · ∇zq =∼

∫
Zβ

∂zkq = − ∼
∫

ΓβZ

n
[1]
k q , ∀q ∈ H1

#(Z) ,
(2.6)
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• Find w ij,β ∈ H̃
1

#(Zβ), π̂ij,β ∈ L2(Zβ) such that

∼
∫
Zβ

µβez(w
ij,β + Πij) : ez(v)− ∼

∫
Zβ

π̂ij,β∇z · v = 0 , ∀v ∈ H1
#(Zβ) ,

∼
∫
Zβ

∇z ·
(
w ij,β + Πij

)
q = 0 , ∀q ∈ L2(Zβ) ,

(2.7)

where Πij = (Πij
k ) with Πij

k = zjδik.

2.4.2 Macroscopic problem

The homogenized coefficients involved in the macroscopic problem are computed using
the characteristic responses (i, j, k, l = 1, 2, 3 and β, α = 2, 3),

Cij =∼
∫
Z1

[
1

µ1

K∇z(zj + πj)] · ∇z(zi + πi) ,

Pβlk = φβδkl− ∼
∫
Z1

[
1

µ1

K∇zψ
k,β]l ,

Pβ∗
lk = φβδkl+ ∼

∫
Zβ

∂zl π
k = φβδkl+ ∼

∫
ΓβZ

n
[β]
l π

k = φ2δkl− ∼
∫
Z1

∂zl π
k ,

Aβijkl =∼
∫
Zβ

µβez(Π
kl + w kl,β) : ez(Π

ij + w ij,β) ,

Hαβ
kl =∼

∫
Zα

(∇zψ
l,β)k =∼

∫
Z1

[
1

µ1

K∇zψ
k,α] · ∇zψ

l,β ,

(2.8)

The symmetry P∗β
kl = Pβlk can be proved, as in [8].

By virtue of the Stokes flow two-level homogenization, the macroscopic model of the
lobular structure involves two velocity fields associated with the portal and hepatic vein
channels, and the pressure related to the sinusoidal porosity. The weak formulation reads,
as follows: Find (p0,u2,u3) ∈ H1(Ω)×H1

0(Ω)×H1
0(Ω) such that∫

Ω

[C∇p0 −
∑
β

Pβuβ] · ∇q =

∫
Ω

[Cf ] · ∇q , ∀q ∈ H1(Ω) ,∫
Ω

[Aαe(uα)] : e(v) +

∫
Ω

[(Pα)T∇p0] · v +
∑
β

∫
Ω

v ·Hαβuβ =

∫
Ω

[(Pα)T f ] · v , ∀v ∈ H1
0(Ω) ,∫

Ω

p0 = 0 .

(2.9)

If the microporosity Ωε,δ is a connected domain, thus Z1 and Y ∗ are connected, C is
positive definite. If Ωδ

β are connected domains, Aβ are positive definite and so also Hββ,
β = 2, 3.
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2.4.3 Macroscopic model

From (2.8), it is straightforward to obtain the strong formulation for which the bound-
ary conditions can be generalized: Find unknown fields (p0,u2,u3) which satisfy

−∇ · [C(∇p0 − f )−
∑
β

Pβuβ] = 0 , in Ω ,

−∇ · [Aαe(uα)] + (Pα)T (∇p0 − f ) +
∑
β

Hαβuβ = 0 in Ω , α = 2, 3 .
(2.10)

with the boundary conditions (n · t = 0, whereby t is any tangent) :

n · uα = ūαn on ∂Ω ,

n ⊗ t : Aαe(uα) = σ̄αt on ∂Ω ,

p0 = p̄ on ∂pΩ ,

n · (C∇p0 −
∑
β

Pβuβ) = w̄ on ∂wΩ ,

(2.11)

where ∂Ω = ∂pΩ ∪ ∂wΩ and these parts are disjoint, ∂pΩ ∪ ∂wΩ = ∅. In Section 4 we
present an example in which the boundary conditions were prescribed according (2.11).

3 THE TWO-COMPARTMENT DARCY FLOW MODEL

The second model which can be used for modelling the tissue perfusion is based on
the Darcy flow with the double porosity. In [6] the model was derived assuming the
tissue deformability. Here we present the mode for a rigid skeleton. The domain Ω is
decomposed according to (2.1), however, the dual porosity is already homogenized; the
only scale parameter δ is related to the mesoscopic scale, thus, Ωδ = Ωδ

1 ∪ Ωδ
F ∪ Γδ ,

3.1 The mesoscopic model — lobular level

At the mesoscopic level, reference periodic cell Z is identical with the one employed
for the first model, see Section 2.1. The permeability in the dual porosity is proportional
to δ2, such that

Dδ =

{
δ2D̄

1,δ
in Ωδ

1 ,
Dβ,δ in Ωδ

β, β = 2, 3 ,
(3.1)

whereby there exist constants c, c > 0 such that c|Dα,δ| ≤ |D̄1,δ| ≤ cDβ,δ| for α, β ∈
{2, 3}. The mesoscopic Darcy flow is governed by the following system of equations,

∇ ·w δ = 0 ,

w δ = −Dδ(∇pδ − f δ) ,

}
in Ωδ

1 ∪ Ωδ
2 ∪ Ωδ

3 , (3.2)

where the obvious interface pressure and flux continuity is prescribed, [pδ]1β = 0 and

[w δ · n ]1β = 0, β = 1, 2

n ·w δ = gδ =

{
δḡ1 in ∂extΩ

δ
1 ,

gβ in ∂extΩ
δ
β, β = 2, 3 .

(3.3)
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The effective flow model presented in the subsequent sections has been derived from the
weak formulation of (3.2)-(3.3). Below we present only the local and global (macroscopic)
models.

3.2 The local problems

Two local problems for the characteristic responses must be solved in domain Z.

• The characteristic response in the dual porosity (smeared sinusoids) expresses the
flow through the porosity Z1 due to the unit pressure difference between the two
interfaces. We define H1

#0(Z1) = {ψ ∈ H1
#(Z1)| , ψ = 0 on ΓZ} and consider

function ϕ̄ ∈ H1
#(Z1) such that ϕ̄ = 1 on Γ1

Z and ϕ̄ = 0 on Γ2
Z . The problem reads:

Find ϕ̃1 ∈ H1
#0(Z1) such that∫

Z1

[D̄
1∇(ϕ̃1 + ϕ̄1)] · ∇ψ = 0 for all ψ ∈ H1

#0(Z1) , (3.4)

• The second characteristic response describes the flow induced by a unit macroscopic
pressure gradient in the portal and hepatic channels: Find ϕ̃β ∈ H̃1

#(Zβ) such that∫
Zβ

[Dβ∇(ϕiβ + zi)] · ∇ψ = 0 for all ψ ∈ H1
#(Zβ) , β = 2, 3 . (3.5)

3.3 The macroscopic model

Using the solutions of (3.4) and (3.5), the macroscopic flow coefficients are computed
by two volume integrals,

Kβ
ij =

1

|Y |

∫
Yd

[Dβ∇(ϕiβ + zi)] · ∇(ϕjβ + zj) = 0 , β = 2, 3 ,

G =
1

|Y |

∫
Γ2

ν · [Dm∇(ϕ̃1 + ϕ̄1)] .

(3.6)

The macroscopic flow in the precapillary porosities of the lobulae is governed problem
describing distribution of the two macroscopic pressures, pα ∈ H̃1(Ω), α = 2, 3,∫

Ω

[K α(∇pα − f̄
α
)] · ∇qα +

∫
Ω

G(pα − pβ)qα =

∫
∂Ω

ḡαqα , for all qα ∈ H1(Ω) , α 6= β

(3.7)

where ḡα = φ̄αgα and f̄
α

= φαf α are defined using the volume and surface porosities,
respectively, φα and φ̄α.

From (3.7), the strong formulation can be expressed easily:

−∇ · [K α(∇pα − f̄
α
)] +G(pα − pβ) = 0 in Ω , α = 2, 3 , α 6= β

n ·K α(∇pα − f̄
α
) = ḡα on ∂Ω , α = 2, 3 .

(3.8)

Below we shall assume that all the volume forces are zero, f̄
α

= 0 .
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Figure 2: Left: Geometry representation of microscale; subdomains indicated. Right:
Geometric representation of a macroscopic tissue specimen; boundary parts indicated.

4 NUMERICAL EXAMPLES

The two models presented in Sections 2 and 3 has been used to simulate flows in the
periodic lobular structure of the liver, which is generated using the RPC shown in Fig. ??.
Here we aim to compare both the homogenized models which, at the lobular level, describe
flow in the sinusoidal porosity by the Darcy flow model. The sinusoids distributed in Z1

form a microporosity characterized by a highly anisotropic permeability D1 which reflects
the blood flow in the capillary network. Since the Darcy flow model is relevant to both
the mesoscopic models (2.4) and (3.2), in domain Ωδ

1 with the RPC Z1 we use the results
of [3, 2], from where the permeability tensors can be reconstructed locally with respect
to the cylindrical system established with its axis aligned with the central vein.

It should be emphasized that in (2.4) the permeability µ−1
1 K is the result of the first

level homogenization and involves the viscosity ε2
0µ1 established for a given characteristic

size of the capillary porosity. For the second model, in (3.1), the permeability is assumed

to be given, therefore, we can relate the two models by δ2
0D̄

1,δ ≈ (ε2
0µ1)−1K , for a

given mesoscopic characteristic length, i.e. the scale parameter δ0 = 10−2, while the
blood viscosity ε2

0µ1 = 1.0 × 10−3Pa.s, thus µ1 is evaluated for the sinusoidal porosity
characteristic size, ε0 ≈ 10−4.

symbol quantity value unit
kr radial permeability 1.6× 10−14 m2

kφ tangential permeability 1.8× 10−14 m2

kz axial permeability 3.6× 10−14 m2

ε2
0µ1 real viscosity 1.0× 10−3 Pa.s
µF viscosity in canals 1.25× 10−3 Pa.s
ε0 scale parameter 1.0× 10−4 -
δ0 scale parameter 1.0× 10−2 -

Table 1: Model parameter values.
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Figure 3: The response (p,u2,u3) of the Darcy-Brinkman model, reconstructed velocity
u1 in the microporosity.

4.1 The Darcy-Brinkman model

As mentioned above, here we skip the upscaling procedure at the microscopic level
related to the sinusoids. Permeability in the homogenized sinusoidal porosity occupying
domain Z1 are introduced by virtue of works published in [3, 2], see Tab. 1 To upscale
the flow at the mesoscopic level, we consider the geometry of the RPC describing the
idealized lobular structure, see Fig. 2(left). The local problems (2.6) in the dual porosity
Z1, and (2.7) in Zβ, β = 2, 3 are solved with the viscosity µF = 1.25× 10−2 Pa.s.

On the boundary ∂Ω of the macroscopic hexahedron shaped domain Ω, see the notation
in Fig. 2(right), the condition of the type (2.11) are prescribed on Walls: ūαn = 0, α = 2, 3,
on the Input/Output part: ū2

n is given, whereby ū3
n = −0.2ū2

n. In addition, on the whole
∂Ω we consider σ̄αt = 0, α = 2, 3, and require

∫
Ω
p = 0.

Macroscopic distributions p, u2 and u3 are illustrated in Fig. 3, showing inflow through
system of mesoscopic channels Z2 and outflow through the system of channels Z3. The
fluid is filtered through the microporosity Z1. The macroscopic pressure distribution of p
in the microporosity seems to be constant alongside x1-axis direction. The velocity field
in the microporosity u1 is reconstructed by the Darcy law using p.

4.2 The Double-permeability Darcy model

For the two-compartment Darcy flow model, the sinusoids distributed in Z1 form a
microporosity characterized by a highly anisotropic permeability D1; this has been intro-

9
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duced according the results of [3, 2], as discussed above, see Tab. 1.
Also in the precapillary vessels represented by channels Z2 and Z3, the flow is described

approximately by the diffusion equations with the permeabilities D2 and D3 which are
established as an approximation of the Poiseuille-Stokes flow. Since the precapillary
vessels of both the PV (vertex veins) and HV (central veins) systems are defined as
cylindrical tubes, the axial permeability can be established by K̄i,α = πR2

i (z)/8µ2 for any
i-the vessel of the two systems (α = 2, 3) within domains Zα. Then, in the i-th vessel
Zi,α ⊂ Zα involved in Zα, the permeability is defined by

K i,α(z) = K̄i,ανi ⊗ νi + κI , z ∈ Zi,α ,

where νi ⊗ νi is the rank-one tensor generated by the vessel axial direction νi, while κI
is the isotropic permeability part given for a small regularization parameter κ. In the
vessel overlaps, for z ∈

⋂
i Zi,α, an average of K i,α computed for each i is taken (we drop

the details here). With so established permeabilities, the local problems (3.4) in the dual
porosity Z1, and (3.5) in Zβ, β = 2, 3 are solved.

The boundary conditions considered in problem (3.8) are, as follows: Walls: ḡα = 0 ,
for α = 2, 3; Input/Output: ḡ2 is given, whereas ḡ3 = −0.2ḡ2. In addition, we require∫

Ω
p2 = 0. In Fig. 4, the macroscopic distribution of pressure fields p2 and p3 is displayed.

The velocity fields u2 and u3 are computed from pressure fields p2 and p3 using the Darcy
law. We observe qualitatively similar behavior as the one of the Darcy-Brinkman model.

5 CONCLUSIONS

We compared two different models describing flows in the double porous medium which
corresponds to an idealized liver tissue. The Darcy-Brinkman model derived in for the
two-compartment mesoscopic topology has been extended here for the three compartments
corresponding to the sinusoidal porosity and two precapillary venous systems. This model
is obtained by the two-level homogenization of Stokes flows with the contrast in the fluid
viscosity. The double permeability Darcy flow model has been adapted according to work
[6] where the dual porosity scaling proposed in [1] was employed. To describe the liver
tissue perfusion, we proposed a geometric model of the periodic lobular structure, based
on the representative periodic cell which is associated with the primary lattice defined by
the central hepatic veins.

The two models provide solutions of either the pressure or the velocity distributions
associated with the mesoscopic porosities constituted by the portal and hepatic venu-
lae. While the Darcy-Brinkman (DB) model provides also the sinusoidal pressure as the
macroscopic quantity, in the double-permeability Darcy (DD) model, the microporosity
pressure must be reconstructed using the characteristic mesoscopic responses. Qualita-
tively, in the presented example, the velocity fields computed using both the models are
similar. The differences (see Fig. 5) are related to different treatment of the mesoscopic
interface conditions the interface between the mesoscopic channels and the sinusoidal
porosity.

10
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Figure 4: The response (p2, p3) of the double-permeability Darcy model; reconstructed
velocity (u2,u3).

Figure 5: Left: Comparison of the first components of macroscopic velocity fields (u2,u3),
distribution along x1-axis for Darcy-Brinkman model (DB) and Double-permeability
Darcy model (DD). Right: Differences in velocities (u2,u3) obtained as the DB model
solution relatively to the DD solution. Note that the highest relative difference is attained
for very small velocities.
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