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Abstract. This lecture presents the understanding of the fundamentals when designing
a numerical schemes for hyperbolic problems with discontinuities as parts of their solu-
tions. The fundamentals includes the consistency with hyperbolic balance laws in integral
form rather than PDE form, spatial-temporal coupling, thermodynamic consistency for
computing compressible fluid flows, convergence arguments and multidimensionality etc.
. Some numerical results are shown to display the performance

1 Introduction

This lecture presents the recent progress we made when hyperbolic problems, if their
solutions contain discontinuities such as shocks and material interfaces, are computed.
Due to the presence of discontinuities, the governing equations of the hyperbolic problems
have to be understood in integral form (weak sense, distributional sense etc), rather than in
purely differential form. Prototype examples are problems around compressible fluid flows,
in which shocks are ubiquitous. Most of traditional numerical methods for such a family
of problems are based on the differential form with various techniques near discontinuities.
We can refer to [1, 22] and references therein for going over the development.

One of most fundamental methods representing the solution of hyperbolic problems
can trace back to Cauchy-Kowalevski in 1700’s [4], and the approximate solutions are
represented in terms of power series using the prescribed data on non-characteristic sur-
faces. The numerical realization of this approach is made by Lax and Wendroff in 1960’s
[15], mainly for one-dimensional hyperbolic conservation laws. The resulting scheme is
the celebrated Lax-Wendroff scheme and has irreplaceable values at least in the following
sense.

(i) It is a unique three-point second order accurate scheme. Any high order scheme
should be consistent with the Lax-Wendroff method when it reduces to the second
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order version. Therefore the Lax-Wendroff method is the reference of all high order
accurate methods.

(ii) It uses the least stencils (just three points for each solution value at each time step)
and is most compact. Useless information is adopted as least as possible.

(iii) The Lax-Wendroff approach is a temporal-spatial coupled method and the fully
useful information of the governing equations are incorporated into the scheme.
Thus, there is no need to exert extra effort if any other physical or geometrical
effects are included.

Nevertheless, the Lax-Wendroff approach just works for smooth flows, and it should be
modified to adapt for capturing discontinuities. The currently-used generalized Riemann
problem (GRP) method is regarded as the discontinuous version of L-W method, and
it uses both the Cauchy-Kowalevski methodology and tracks the singularity [2, 3, 7, 5].
Moreover, the resulting scheme is consistent directly with the corresponding balance law,
i.e, the weak form of the underlying governing equations, rather the partial differential
equations. Hence the GRP approach avoids the large disparity from the “true” solution if
strong discontinuities are present. Hence we will interpret detailed fundamentals behind
the GRP approach.

This lecture will discuss the fundamentals of this family of methods, in terms of spatial-
temporal coupling, thermodynamics, transversal effect and some engineering applications.

2 Lax-Wendroff method and the generalized Riemann problem method

Consider hyperbolic conservation laws,

ut + f(u)x = 0, (1)

where f(u) is the flux function. We denote by ∆x the spatial increment, by ∆t the time
increment, Ij = (xj− 1

2
, xj+ 1

2
) the computational cell interval with xj+ 1

2
= (j + 1

2
)∆x,

xj = j∆x, tn = n∆t. The Lax-Wendroff method in [15] uses the Taylor series expansion
to design the scheme,

un+1
j = unj −

∆t

∆x
[fLW

j+ 1
2
− fLW

j− 1
2
], (2)

where unj can be understood as the point value of solution at (xj, tn), and the numerical
flux fLW

j+ 1
2

is taken as

fLW
j+ 1

2

= fn
j+ 1

2

+
∆t

2

(
∂f(u)

∂t

)n

j+ 1
2

,
∂f(u)

∂t
= f ′(u)

∂u

∂t
,

∂u

∂t
= −f ′(u)

∂u

∂x
. (3)

Here fn
j+ 1

2

is approximated upwind or using simple average from both sides, ∂u
∂x

can be

approximated using some difference quotient. This is a temporal-spatial coupling method.
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with second order accuracy both in space and time. The coupling results from the sub-
stitution of spatial variation into temporal evolution.

The Lax-Wendroff scheme can be also written in the finite volume framework over the
control volume [xj− 1

2
, xj+ 1

2
]× (tn, tn+1), and (2) is reinterpreted as

unj =
1

∆x

∫ x
j+1

2

x
j− 1

2

u(x, tn)dx,

fLW
j+ 1

2
= f(u(xj+ 1

2
, tn +

∆t

2
)) =

1

∆t

∫ tn+1

tn

f(u(xj+ 1
2
, t))dt+O(∆t2).

(4)

The issue is how to approximate f(u(xj+ 1
2
, t + ∆t

2
)). A direct Taylor approximation, as

in [15], inevitably produces oscillations near discontinuities (if they exist), and even leads
to the collapse of the corresponding simulations if the approximation has no constraint.
There were a lot of achievements, particularly around limiter technology, on improving the
Lax-Wendroff approach to resolve discontinuities such as the flux limiter approach [12, 13]
and MUSCL type approach [25] etc. We will follow the latter framework to address the
fundamentals.

Assume that given initial data for (1) at t = tn in the form

u(x, tn) = Pj(x), x ∈ (xj− 1
2
, xj+ 1

2
), (5)

where Pj(x) is reconstructed function, with possible discontinuities at each cell interface
x = xj+ 1

2
. The reconstruction technology is not repeated here and the readers are referred

to e.g., [1] for details. The generalized Riemann problem (GRP) method is based on the
resolution of the generalized Riemann problem for (1) subject to the initial data (5). The
solution strongly depends on the associated Riemann problem (after suitable translation),

vt + f(v)x = 0,

u(x, 0) =

{
v− := Pj(xj+ 1

2
− 0), x < 0,

v+ := Pj+1(xj+ 1
2

+ 0), x > 0.

(6)

The solution v(x, t) is self-similar v(x, t) = v(x/t, 1). Particularly we denote the value
un
j+ 1

2

:= v(0, 1). Thanks to the regularity in time, we can take the standard Taylor

expansion (only) in time to obtain

u(xj+ 1
2
, t) = u(xj+ 1

2
, tn + 0) +

∂u

∂t
(xj+ 1

2
, tn + 0)(t− tn) +O(∆t2), tn < t < tn+1. (7)

It turns out that the flux can be approximated within second order accuracy

fGRP
j+ 1

2
= f(u

n+ 1
2

j+ 1
2

), u
n+ 1

2

j+ 1
2

= u(xj+ 1
2
, tn + 0) +

∆t

2

∂u

∂t
(xj+ 1

2
, tn + 0). (8)
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The value un
j+ 1

2

:= u(xj+ 1
2
, tn + 0) = un

j+ 1
2

is given by a Riemann solver for (1)- (6). We

refer to [3, 11, 23] for exact or approximate Riemann solvers. The GRP solver serves to
approximate the value (

∂u

∂t

)n

j+ 1
2

=
∂u

∂t
(xj+ 1

2
, tn + 0). (9)

Obviously, this could be achieved using the Lax-Wendroff approach, if the solution is
smooth around the grid point (xj+ 1

2
, tn). Otherwise, we obtain the value (9) in the fol-

lowing

(i) Acoustic approximation. As ‖v− − v+‖ � 1, only linear waves emanate from
(xj+ 1

2
, tn). Then (1) can be locally linearized as

ut + f ′(uj+ 1
2
)ux = 0, (10)

and the value (∂u/∂t)n
j+ 1

2

is computed to be(
∂u

∂t

)n

j+ 1
2

= −f ′(uj+ 1
2
)

(
∂u

∂x

)n

j+ 1
2

. (11)

The value

(
∂u

∂x

)n

j+ 1
2

is embodied in the initial data Pj(x).

(ii) Nonlinear GRP solver. As ‖u−−u+‖ � 1, the genuinely nonlinear GRP solver has
to be adopted. This was originally derived in [2] for gas dynamics and extended with
a lots of applications [3]. This solver is derived using the nonlinear geometric optics,
the tracking of singularity and the coherence of spatial and temporal variation of
the flows. Later on, this method was re-accessed using the concept of Riemann
invariants for general hyperbolic balance laws [7, 5, 21]. We refer to those references
for details.

We conclude that the GRP flux is taken as

fGRP
j+ 1

2
= f(u

n+ 1
2

j+ 1
2

). (12)

This formula is always true no matter where discontinuities are present or not. The
resulting scheme

un+1
j = unj −

∆t

∆x
(fGRP

j+ 1
2
− fGRP

j− 1
2

) (13)

could resolve discontinuities well. In the following sections, we will state the fundamentals
of the GRP scheme.

For general hyperbolic problems governed by the equations of form

ut +∇ · f(u) = g(x,u), (14)

we can derive the genuinely multidimensional GRP solver [17].
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3 Spatial-temporal consistency with hyperbolic balance law

The GRP method provides a scheme that can be regarded as the discontinuous version
of the Lax-Wendroff scheme. This method is consistent with the hyperbolic balance law

dūj(t)

dt
= − 1

∆x
[f(u(xj+ 1

2
, t))− f(u(xj− 1

2
, t))], (15)

in the sense that

fGRP
j+ 1

2
− 1

∆t

∫ tn+1

tn

f(u(xj+ 1
2
, t))dt+O(∆t2). (16)

Note that this error is measured in terms of the time increment ∆t, equivalently mesh
size ∆x, rather than the local solution variation ∆u. It turns out that the GRP scheme
(13) is fully consistent with the balance law (the integral form of (1))∫ x

j+1
2

x
j− 1

2

u(x, tn+1)dx =

∫ x
j+1

2

x
j− 1

2

u(x, tn)dx

−
[∫ tn+1

tn

f(u(xj+ 1
2
, t))dt−

∫ tn+1

tn

f(u(xj− 1
2
, t))dt

]
,

(17)

no matter whether the solution contains discontinuities or not. The local error is

Elocal = O(∆t2). (18)

Moreover, the GRP solution satisfies the “generalized” entropy inequality with tolerate
error,∫ x

j+1
2

x
j− 1

2

U(u(x, tn+1))dx ≤
∫ x

j+1
2

x
j− 1

2

U(u(x, tn))dx

−
[∫ tn+1

tn

G(u(xj+ 1
2
, t))dt−

∫ tn+1

tn

G(u(xj− 1
2
, t))dt

]
+O(∆t2),

(19)

where (U, F ) is the entropy pair associated with (u, f) in (1). Here u(x, t) is the entropy
solution of (1) subject to the data (5). This shows that any possible violation of entropy
inequality comes from the data reconstruction technology. Therefore, it is just this consis-
tency that guarantees the approximate solution given by the GRP scheme (13) converges
to the (weak) entropy solution of (1). All rigorous analysis can be found in [6].

4 Thermodynamic consistency

For compressible fluid flows [8], the thermodynamical (Gibbs) relation

Tds = de− p

ρ2
dρ, (20)
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has always the fundamental importance, where T is the temperature, s is the entropy, e
is the internal energy, p is the pressure and ρ is the density. Dynamically, there holds,

(ρs)t + (ρus)x = 0. (21)

Therefore, the numerical solution should implicitly satisfy∫ x
j+1

2

x
j− 1

2

ρs(x, tn+1)dx =

∫ x
j+1

2

x
j− 1

2

ρs(x, tn)dx

−
[∫ tn+1

tn

ρus(xj+ 1
2
, t)dt−

∫ tn+1

tn

ρus(xj− 1
2
, t)dt

]
,

(22)

with tolerate error of O(∆t2). In the context of GRP methodology, we precisely describe
entropy flux through the relation

∂s

∂t
(xj+ 1

2
, 0+) = −uj+ 1

2
s′L

cL
cj+ 1

2

Π(cj+ 1
2
; 0, βL), (23)

provided that a rarefaction wave moves to the left. The details can be found in [18]. The
numerical result in Figure 1 shows the performance of such a thermodynamic effect.

5 Transversal effect

Most of numerical methods for hyperbolic problems construct numerical fluxes in the
direction normal to each cell interface, thanks to the divergence formula, and even so for
high order accurate methods if the associated Riemann solver is taken as a building block.
The resulting schemes may have defects resulting from the loss of transversal effect. We
have made a numeral experiment for the system linear wave equations

ut + px = 0, vt + py = 0, pt + ux + vy = 0. (24)

We choose the initial data as

p(x, y, 0) = 0, u(x, y, 0) = v(x, y, 0) = cos(π(x+ y))− cos(π(x− y)). (25)

The numerical result is displayed in Table 1. The GRP method include the transversal
effect using the property of spatial-temporal coupling,

pt = −ux − vy. (26)

The transversal variation is converted into the temporal evolution of p.

6 Multi-stage high order based on GRP solver

With the temporal consistency of the Lax-Wendroff type solver, we can design multi-
stage high order schemes for hyperbolic problems. A successful example is given in [17].
Write the governing equation in the form

∂u

∂t
= L(u), (27)

which is often called the semi-discrete form. Then the method is achieved in the following
two steps.
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Figure 1: The comparison of the density profile for the large pressure ratio problem. The initial data
is taken as (ρ, u, p) = (10000, 0, 10000) for 0 ≤ x < 0.3 and (ρ, u, p) = (1, 0, 1) for 0.3 ≤ x ≤ 1.0. The
schemes are GRP4-HWENO5 (squares) and RK4-WENO5 (dots) with m cells.The solid lines are the
exact solution.

(i) Lax-Wendroff step. Given an initial data un(x) to (1) at t = tn, construct
instantaneous values u(x, tn + 0) and ∂u

∂t
(x, tn + 0), which are symbolically denoted

as

u(·, tn + 0) =M(un),
∂

∂t
u(·, tn + 0) = L(un). (28)

Then ∂
∂t
L(u)(·, tn + 0) is subsequently obtained using the chain rule,

∂

∂t
L(un) =

∂

∂u
L(un)

∂

∂t
u(·, tn + 0). (29)

(ii) Solution advancing step. Define the intermediate data u∗(x)

u∗ = un +
1

2
∆tL(un) +

1

8
∆t2

∂

∂t
L(un), (30)

7



Jiequan Li

Table 1: The L1 error and convergence order of p for the periodic waves problem at the final time T = 2.
The method are GRP2D, RK and GRP1D with N × N cells. The abbreviations mean that: GRP2D
represents the genuinely 2-D GRP solver with transversal effect, RK for the two-stage Runge-Kutta
method, and GRP1D for the method with the normal GRP solver.

GRP2D RK GRP1D
N L1 error order L1 error order L1 error order
40 3.1769E-2 1.2492E-1 1.3361E-1
80 7.9995E-3 1.99 3.0513E-2 2.03 6.3077E-2 1.08
160 2.0052E-3 2.00 7.4680E-3 2.03 3.0125E-2 1.07
320 5.0104E-4 2.00 1.8457E-3 2.02 1.9803E-2 0.61
640 1.2520E-4 2.00 4.5874E-4 2.01 1.2063E-1 −2.61

which can be used to reconstruct new initial data u∗(x) and get the solution ∂
∂t
L(u∗).

Then the solution to the next time level tn+1 = tn + ∆t can be updated by

un+1 = un + ∆tL(un) +
1

6
∆t2

(
∂

∂t
L(un) + 2

∂

∂t
L(u∗)

)
. (31)

This method can be further extended to any high order accuracy[20]. The performance
is displayed in Figure 2 for capturing small scale structures.
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7 Discussion beyond hyperbolic problems

As far as this method is adopted for real engineering problems, the performance could
be further demonstrated. For example, we simulate the following problem in [16]. Assume
that a weak shock with the shock Mach number Ms = 1.22 propagates from atmospheric
air into a stationary cylindrical bubble filled with lighter helium or heavier Refrigerant
22(R22). The computational domain [0, 2.5] × [0, 0.89] composes of 2500 × 890 square
cells and the position of initial discontinuity is set in Figure 3. The numerical result fully
agrees with the corresponding physical experiment.

D=0.5 0.375 0.125

Lx=2.5

Ly=0.89 Air Bubble

in
cid

en
t sh

o
ck

Figure 3: Diagram of the shock-bubble interaction problem

We can also extend this method the simulation of flows at the Navier-Stokes or Boltz-
mann level [20]. More extensions can be found e.g. in [24, 19].
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with different configurations at t/t0 = 0, 28.8, 48.9 and 75.7.
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