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Abstract. We present a finite element modelling framework to capture the distribution of in-

plane compressive failure strengths of unidirectional fibre reinforced composites resulting 

from the characteristic spatial distribution of fibre misalignments. Using a homogenized fibre-

matrix representation of composite, the spread of resulting peak stresses calculated using 

Monte Carlo simulation led by fibre orientations given at each material point, are used to 

formulate probabilistic failure surface.  

1 INTRODUCTION 

Owing to their exceptional properties such as high strength and stiffness to weight ratio, 

fibre reinforced composites (FRPs) have become an attractive option for use in advanced 

structural applications, mainly in the fields of aerospace, wind energy and automotive. This 

class of materials offer environmental benefits from different perspectives. Relatively easier 

manufacturing processes compared to metals and lightweight construction result in energy 

and fuel savings. All these advantages are best exemplified by most recent large civil aircrafts 

such as Airbus A380 and Boeing 747, which are using carbon FRPs for more than half of 

airframe structure. These structural parts include highly compression loaded components such 

as fuselage, fins and rudders among others [1, 2]. 

Because of high compression loads during service time of a structural component, strength 

under compression is a highly relevant mechanical property. Unidirectional fibre reinforced 

composites serve the purpose in this regard, but on the other hand compressive failure of these 

materials is a design limiting phenomenon. Compressive strengths are generally less than 

60% of the tensile strengths in industrial composites having ~60% fibre volume fraction [3]. 

Compressive failure at micro level is predominantly led by microbuckling of fibres in a 

highly localized band and the phenomenon is called kinking [3]. Considering microbuckling 

to be caused by elastic loss of stability, Rosen gave the frequently quoted formula (1) [4]: 

σc = Gm / (1-vf  )  (1) 

where σc is the kinking stress which would define compressive strength, Gm is the shear 

modulus of the matrix and vf is the fibre volume fraction. Budiansky interpreted Rosen’s 

result as σc=G which is effective longitudinal composite shear modulus [6]. 

Argon [5] argued that Rosen formula of buckling of fibres in an elastic matrix gives an 

upper limit on compressive strength. Argon considered initial fibre misalignments along with 
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matrix shear strength to play an important role, defining the location and value of kinking 

stress. Based on this argument of plastic microbuckling mechanism, the well-known formula 

(2) was given: 

σc = τy / ϕo   (2) 

where τy and ϕo are the shear strength of matrix and the initial fibre misalignment 

respectively. Budiansky [6] extended this approach to a more generalized formulation (3) 

which asymptotes to Argon’s result when the shear yield strain (γy) is small compared to 

initial fibre misalignment: 

σc = τy /( γy + ϕo)  (3) 

It was also pointed out that a higher reduction in kinking stress occur for inclined kink 

bands, which are observed most often experimentally. Two analytical cases of very short and 

long wavelengths of fibre misalignments were considered to come up with the range of 

resulting kink band inclination, emphasizing that not only misalignment angle but additionally 

amplitude affect the resulting strength. All the aforementioned analytical formulations 

considered an infinite waviness region, meaning that the waviness region stretches across the 

whole transversal to the nominal fibre direction length of the representative volume element 

(RVE). 

With increasing computational power available in 90s, numerical solution schemes became 

common. Kyriakides et. al. [7] predicted the compressive strength using a 2D periodic array 

of imperfect fibres and matrix, in which fibres are modelled as nonlinear isotropic and matrix 

is considered as an elasto-plastic solid based on J2 plasticity theory. Inspired by their parallel 

experimental outcomes, parametric numerical analyses were performed using idealized 

sinusoidal form of fibre misalignment and it was concluded that wavelength and amplitude of 

waviness have a high impact on predicted strengths. Predicted compressive strength and 

corresponding strain values were validated, and subsequently substantiated Argon’s theory 

that fibre imperfections indeed play an important role in strength calculations. Prabhakar and 

Waas [8] performed a numerical study using a micromechanical model of unidirectional plies 

under in-plane loading conditions. The focus was on the competing mechanisms of kinking 

and splitting of fibres with virtual variation in material properties to quantify and distinguish 

these failure mechanisms. It was suggested that modelling should include cohesive elements 

in cases where splitting failure is equivalently likely to occur as kinking for a better prediction 

of compressive strength. Recently, Bishara et. al. [9] investigated the mechanisms of kinking 

failure using 3D numerical micro modelling. Differences between compressive strength of 

composites having small and large wavelength misalignments were shown as well as the 

resulting kink band inclination. The following sequence for kinking failure was reported; fibre 

imperfections induce yielding of the matrix which then propagates to form a yield band with 

increasing width in nominal fibre direction reaching a specific value. At this point the bent 

fibres having reduced support in transversal direction through matrix, result in fibre breakage 

on tensile loaded side of the localized band. This damage propagates towards final failure 

forming the typical kink band. 

In addition to analytical and numerical findings to ascertain compressive strength of FRPs, 

throughout the past few decades parallel experimental studies have been performed to validate 

the theoretical results as well as to quantify the effects of different material properties. One of 
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the first extensive testing of carbon, glass and polyamide fibres embedded in polyester resins 

with varying combinations was carried out by Piggott and Harris [10]. Although most of the 

tests were carried out with relatively low fibre volume fractions, the main outcomes were that 

the matrix shear has a dominant role in characterising compressive strength, and 

comparatively higher variation in compressive strengths among tests with same 

specifications. Kyriakides et. al. [7] performed experimental studies on an AS4 carbon fibre 

reinforced PEEK thermoplastic based composite with 60% vf to study the effects of fibre 

imperfections. The tests were performed on flat coupons and cylindrical rod specimens. Even 

though the testing was performed within carefully controlled conditions, the resulting 

compressive strengths showed considerable spread.  

Since all analytical, numerical and experimental results pointed towards the importance of 

fibre misalignment in FRPs, there was a need to measure them experimentally. The first effort 

in this regard was carried out by Yurgartis [11] on a carbon fibre based composite using 

micrographs and measuring in-plane and out-of-plane misalignments from the images. The 

fibre misalignment angles were shown to be nearly normally distributed in both in-plane and 

out-of-plane measurements which were independent of each other. Paluch [12] followed suit 

with a different methodology by studying sections cut at different regularly spaced locations 

and visualizing them under optical microscope. The hypothesis that there is no correlation in 

undulations of neighbouring fibres was challenged and it was shown that fibres undulate with 

certain interactions to their immediate neighbours. Clark et. al. [13] performed similar studies 

using confocal laser scanning microscopy and showed similar trend in results. Based on these 

outcomes, spectral densities of fibre misalignments were calculated. 

An important mechanics aspect for small wavelength undulations considered by Fleck et. 

al. [14, 15] was that of fibre bending resistance. Using couple stress theory and a Ramberg-

Osgood solid description in shear and transverse direction on a homogenized description of 

fibre-matrix composite material, kink band width and the factors controlling the initiation and 

growth of kink band were explained. The results confirm that compressive strength is affected 

most by initial fibre misalignment and to a lesser extent by the longitudinal width of this 

initial band of misaligned region. Based on the realization of variation of misalignment from 

experimental outcomes, Slaughter and Fleck [16] extended their couple stress theory based 

approach to add the effects of random fibre waviness on compressive strength using a 

homogenized continuum definition of fibre-matrix composite material and by performing 

Monte Carlo simulation. Liu et. al. [17] later extended it to 2D and fitted the resulting 

distribution of compressive strength with a Weibull distribution. A weakest link based 

engineering approach was subsequently proposed to estimate axial compressive strength from 

the aforementioned results. Another notable contribution is from Allix et. al. using a hybrid 

micro-model. This was a damage based continuum cell approach in which cells, representing 

a homogenized fibre-matrix material and having a random uncorrelated material orientation 

depicting fibre misalignments, were engulfed in cohesive zone elements representing potential 

fracture surfaces. The length of the cells was directly related to ply thickness and 

corresponding experimentally deducted kink band widths. The model was used to 

demonstrate kink band formation and its interaction with other failure mechanisms under 

compression [18]. An interesting work to incorporate the randomness of fibre misalignment 

into material characteristics prediction is from Bednarcyk et. al. [19] Through High-Fidelity 

Generalized Method of Cells Micromechanical Model (HFGMC) and probability-weighted 
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averaging of the appropriate stress concentration tensor of the subcell based on probability 

density function representation of fibre misalignments, effective material moduli and damage 

initiation envelopes under varying input properties were predicted. 

Even though mechanical properties of FRPs, especially under compression loading, vary a 

great deal, the general focus of most analytical and numerical, and consequently, experimental 

studies have been on prediction of a deterministic strength value under compression with few 

exceptions. This variation in strength causes the engineers to use high factors of safety, thus 

affecting costs and efficient use of material. In order to better utilize the exceptional 

mechanical properties of FRPs, there is a need to do further research in quantifying this 

spread of compressive strength. One of the examples in this regard is that of Curtin [20] who 

provided a stochastic model for tensile damage evolution. Basu et. al. [21] used an analytical 

formulation with an idealized form of waviness to predict the compressive failure under 

multi-axial loading. Failure envelopes for strength under compressive load along with 

transverse compression and shear were also predicted. 

In this contribution a relatively simple finite element methodology is employed to capture 

the variation in strength values under in-plane loading conditions, with fibre misalignment 

modelled stochastically following the approach of Liu et. al. [17]. Using this homogenized 

fibre-matrix representation technique, the so called idealized form of infinite band fibre 

misalignment or waviness has also been simulated to help interpret results. After performing 

mesh and effective RVE studies, in-plane probabilistic failure surfaces are generated which 

could help in representation of microstructure variation in macro structural response.  

2 METHODOLOGY 

2.1 Material model 

Most of the analytical and numerical approaches [4-9] consider separate material models of 

elastic fibres embedded in an elasto-plastic resin. This approach, even though computationally 

expensive and difficult to model with realistic fibre misalignments, is the method of choice if 

the target is to predict interactions between different failure mechanisms under certain 

conditions. However, this study focuses on the probabilistic effects of fibre misalignment on 

strength predictions, therefore, it is advantageous because of easier modelling to use a 

homogenized material model representing fibre-matrix composite as a single anisotropic 

material as shown by Liu et. al. [17]. 

Fleck et. al. [14] showed that for small wavelengths of fibre misalignments, fibre bending 

stiffness plays an important role in determining the compressive strength as it increases the 

resulting predicted strength of the composite. However, when the wavelengths are large, 

which is often the case in industrial composites, the results of their couple stress theory 

modelling and kinking theory of Budiansky [6] converge to the same value. Hence, the role of 

fibre bending stiffness is neglected in this work. 

Anisotropic elasticity is modelled using homogenized properties based on Voigt 

micromechanical theory. Elastic material properties are taken from Kaddour et. al. [22] and 

are listed in Table 1. Plasticity is modelled using Hill’s potential function with an associative 

plastic flow rule [23]. Even though this plasticity model is aimed for anisotropic metal 

plasticity, it can still be employed here effectively to detail the methodology under in-plane 

loading conditions provided certain modifications because long fibre CFRPs only show 
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plasticity in shear and transverse directions. This is achieved by adjusting appropriate 

constants of yield surface definition in the model. The nominal fibre direction coincides with 

the 1 direction and as CFRP show no plastification in fibre direction, therefore, yielding is 

eliminated in this load direction. The yield criterion is of the form: 

2f(σ) = (σ22/2Y)2 - (σ11σ22/Y)2 + (τ12 /S)2 (4) 

where Y and S are transverse and shear yield stresses respectively. Non-linear isotropic 

hardening is specified and subsequently mapped to anisotropy by Hill’s parameters. The fact 

that kinking failure is controlled by shear response of the matrix, the input data of hardening 

is chosen for in-plane shear hardening curve, taken from Vogler et. al. [24]. For this purpose 

commercial software Abaqus is employed. An extension to 3D modelling using pressure-

dependent material model and with 3D yield surfaces based on experimental data is planned 

in the follow-up work. 

Table 1: Mechanical properties of unidirectional IM7/8552 

Property Value 

Longitudinal modulus E1 (GPa) 171 

Transverse modulus E2 (GPa) 8.9 

In-plane shear modulus G12 (GPa) 5.6 

Major Poisson's ratio υ12 0.34 

2.2 Waviness Distribution 

Idealized waviness: 

An idealized sinusoidal infinite band form of waviness in a localized region was used 

following Bishara et. al. [9] to help better understand the kink band formation for 

homogenized fibre-matrix composite material modelling approach.  
Random waviness: 

Experimental data has shown that fibre misalignment is in fact stochastic in nature in 

engineering unidirectional FRPs [11, 12, and 13]. It has been measured and calculated to exist 

randomly with certain characteristic parameters over the whole volume with a Gaussian 

distribution. 

Liu et. al. [17] following Slaughter and Fleck [16] used the concept of signal processing 

theory to model the spatial distribution of fibre misalignments from spectral density functions 

of fibre slope α = tan(ϕ). Analysing the spectral density plots generated from experimental 

data by Clark et. al. [13], Liu. et. al [17] argued that it is reasonable to use the exponential 

function for 2D spectral density of fibre slope given in the form: 

S(ωx , ωy) = Soe
-(( ωx/ ωcx)2 + ( ωy/ ωcy)2) (4) 

where ωcx and ωcy and are cut-off frequencies in x and y spatial directions and So is initial 

spectral density. Graph of spectral density using the exponential fitting equation (4) in xy 

plane is shown in Figure 1. In order to perform Monte Carlo simulation random waviness 

distribution are generated. The algorithm used is the one given by Liu et. al. [17] in which 
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spectral density is sampled using eq. 4 and through inverse fourier transform with random 

phase angles, random waviness distributions were generated. 

The resulting spatial distribution of fibre misalignments on a sample RVE is shown in 

Figure 2. A fibre is also tracked on top of it. Black lines represent misaligned fibres whereas 

red line is 7x zoomed version of the same fibre. One can easily see the randomness of the 

fibre misalignments with regions of positive and negative slopes based on the underlying 

wavelengths superimposed in spatial domain.  

 

Figure 1: Spectral density of fibre slopes in xy plane 

 

Figure 2: Fibre misalignment distribution 

2.3 Geometrical Modelling 

Figure. 3 illustrates the schematics of the model which is in the form of a quadrilateral. 

Nominal 0o fibre direction is parallel to x-axis of the model. The nodes on left hand side are 

constrained in x-direction and bottom left node is constrained additionally in y-direction to 

avoid rigid body motions. The nodes on the right edge are coupled to a reference node. Loads 

are applied on the reference node in the form of concentrated forces resulting in compressive 

and shear loads in respective models. For all the models, two dimensional plane stress 8 node 

reduced integration elements (CPS8R) are used. A structured mesh with square dimensions 

was used in all models whether with random or idealised waviness, or with square or 

rectangular models. Thorough mesh and RVE convergence studies have been performed and 

the model dimensions are discussed later in the respective subsection of the following results 

section. The orientations were generated using the algorithm given in Liu et. al. [17] and were 

applied on material point of each finite element to represent the local material direction. 

Because each element has a single fibre orientation, this allows to represent the realistically 

varying local material direction in unidirectional FRPs arising due to fibre misalignments. 
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Since under predominant compression, the failure is driven by plastic microbuckling which 

is caused by geometrically non-linear deformation. Hence, a geometrically non-linear implicit 

solution is carried out. With idealised form of waviness, snap-back after the peak load is 

tracked using Riks’ algorithm. In other simulations for RVE and failure surface studies, the 

same can be achieved. But since the focus is only on the peak loads for these, the analysis is 

terminated after the peak load has been reached. 

 

 

 

 

 

 

 

 

Figure 3: Model Schematic 

3 RESULTS 

3.1 Mesh Sensitivity 

Finite element analysis requires a proper discretization of the geometry based on results’ 

accuracy and computational costs. Another aspect to keep in mind is that since fibre 

orientation is assigned to each integration point within each finite element, this would also 

drive how refined the fibre misalignment distribution representation is. Additionally, since 

this study is based on capturing variation on compressive strength resulting from probabilistic 

fibre misalignments, it was deemed necessary to perform a mesh sensitivity analysis in a 

probabilistic manner. For this purpose a square RVE with dimensions of 100µm was chosen 

and 500 realization have been simulated for each mesh size with successive mesh refinement. 

Initial discretization was 4 elements in each dimension of the square model, and for each 

refinement mesh size was halved resulting in four times the number of elements in 2D model 

in each consecutive refinement. 

The results of mesh refinement are plotted in Figure 4. showing axial compressive peak 

stress (axial load at reference node per initial model cross-sectional area) against the number 

of elements of the respective model. Vertical lines represent the spread of resulting 

compressive stress values, and the corresponding mean and first standard deviation from the 

mean highlighted with dots on these vertical lines. The convergence of mean values shown by 

the red line, as well as overall spread of the data visible by standard deviation points, 

asymptotes after 4th refinement. Hence, this mesh density of 3.125µm mesh edge length is 

chosen which corresponds to roughly half the diameter of fibre diameter. This size of 

discretization is also logical as it represent the fibre misalignment distribution in detail. 

y 

x 
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Figure 4: Mesh Sensitivity Study 

3.2 Idealised Waviness vs Random Waviness 

In order to highlight the need to model the spatial distribution of misalignment over whole 

domain, it is considered necessary to plot axial stress strain curves from same model 

dimensions (500µmx100µm) using both approaches i.e. idealized sinusoidal and random 

waviness, see Figure 5. Up to peak load, both modelling approaches predict a linear response 

with the same slope. The value of peak stress from the idealized sinusoidal model of fibre 

misalignment is different from the one where misalignment is modelled over the whole spatial 

domain as expected. The value of peak stress from random waviness models show a 

distribution rather than a deterministic value, which is presented in section 3.4. In other 

realizations of random waviness, peak stress could be either higher, lower or same as the 

deterministic value of idealized waviness model. 

 

Figure 5: Longitudinal stress against longitudinal strain  

The snap back response under axial compression load can be easily predicted using a 

homogenized modelling approach as depicted. The differences in snap back path between two 

approaches arise from the fact that when waviness is spatially distributed, there are competing 

kink bands giving rise to small peaks and troughs in post peak stress part of the curve. Finally, 

the most critical of these kink bands, based not only on amplitude and size of the waviness but 

also on its location relative to neighbours deciding whether they aid or hinder its propagation, 

matures and spread across the width. This phenomenon can be observed though the contour 

plots of the in-plane shear stress distribution of the model shown at three location of stress-

strain curve: a) at first loading sub-step, b) at peak load, and c) at the point of final failure.  
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Budiansky formula (3) gives a compressive strength value of 1650MPa with misalignment 

angle of 2.5o, which is very similar to the one calculated of 1657MPa for idealized sinusoidal 

model having maximum misalignment 2.5o. Therefore, it is concluded that this approach 

gives accurate results. The particular random waviness realization gives a compressive 

strength value of 1625MPa. This realization is generated with misalignment angles in the 

range -3o to +3o and is not an outlier in terms of peak compressive stress distribution. 

3.3 RVE Study 

The need to select an appropriate RVE first is a vital step. There are different factors 

controlling the selection of an appropriate RVE for the proposed approach which are certain 

aspect ratios of RVE length to width to avoid global buckling, feasible computational time 

and total size defining the size of misalignment wavelengths inclusion in the distribution. 

Hence, a suitable RVE size for prediction of the in-plane strength properties is the one which 

would provide an optimum of all the aforementioned aspects. For this purpose a detailed RVE 

size study has been performed with sizes ranging from 50µm to 2000µm. The aspect ratio 

ranges from 0.2-5 as this range avoids global buckling and the peak stresses result from kink 

band initiation. Another aspect to consider is the fibre misalignment distribution for each size. 

Since it is impractical to perform Monte Carlo simulations for each size to find the peak stress 

distributions, it was assumed that if the realizations are generated randomly for all sizes, the 

resulting fitting would result in the mean surface. 

The results are plotted in the form of a surface. The base plane represents model 

dimensions i.e. length (x) and width (y) respectively and height is given by the respective 

peak stress of the model, see Figure 6 a). The resulting data was fitted to a surface using a 2nd 

degree polynomial in both x and y with least absolute residuals (LAR) method. LAR gives 

equal weight to all data points. On very small models, the deviation in the results is very high 

as expected. The reason is that if the model size is too small, it will not represent typical fibre 

misalignment distributions and thus, susceptible to outliers. Secondly, edge effects are too 

high in such models thus the peak stress in model is attained sooner in most cases. As the 

model size is increased, the spread of data becomes shorter which is visible through a residual 

plot, Figure 6 b), showing the distance of each data point to the fitted surface. The minimum 

point after which the changes in surface are less sudden and the respective residuals are 

minimal is chosen and it corresponds to a model length of 1000µm and a width of 500µm. 

Hence, this model was used for the next phase of probabilistic failure surface study. 

 

 

Figure 6: RVE Study a) Polynomial surface fitting, and b) Residuals plot from the fitting 
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3.3 Probabilistic In-plane Failure Surface 

After selecting the appropriate RVE, simulations have been performed for several loading 

combinations to construct a failure surface. Different systematic proportional load 

combinations of axial and shear loads applied at the reference node of the model has been 

chosen to obtain distributions of peak stresses at each loading scenario. For each load case a 

fixed convergence criteria of max 1% and 1.5% change in mean and standard deviation after 

15 realizations was used. Convergence was achieved in 90-120 realizations for each load case. 

The results of the distribution of each load case using Monte Carlo simulation are plotted 

in Figure 7 a). Small black lines in each loading direction represent whole distribution 

whereas blue boxes on top are representative of 1 standard deviation (red and green dots) 

from mean (yellow dots). As the mean values of peak stress at each load case show a linear 

trend, they are fitted with a linear failure surface, eq. 5. It can be seen that the maximum 

compressive load carrying capacity is highly sensitive to even small applied shear loads as it 

adds to the shear deformation of the matrix by fibre rotation, speeding the kink band 

formation. The shape of the failure surface using the current approach corresponds to the one 

presented by Basu et. al. [21]. A major aspect to be noted is that with the current approach, 

the failure surface is symmetric with respect to shear loads whereas the one from Basu et. al. 

is asymmetric. Since they used an idealized form of waviness which pre determines the 

direction of fibre rotation, therefore, the shear load either increase fibre rotation or it can 

straighten up fibres. In reality there is no single misaligned region which would show the said 

behaviour. Fibres are misaligned randomly, therefore, shear loadings tend to support the 

rotation of fibres resulting in reduction in compressive strength. Another aspect to be noted is 

that with increasing shear and proportionally decreasing axial compression, the distribution of 

the peak stress tend to shorten. This can be seen by the standard deviation of each load case in 

Figure 7 b). Standard deviation are fitted to a quadratic function, eq. 6 and the fitting 

parameters are given in Table 2. Since in pure shear, fibres do not support the load hence, at 

this point standard deviation almost vanishes. 

Fm =1 + f1σ11 + f2τ12 (5) 

Fstd = -1.794 + f1(σ11)
2 + f2σ11 + τ12 (6) 

 

Figure 7: a) Probabilistic failure surface, and b) Corresponding standard deviations 
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Table 2: Fitting parameters 

Function f1 f2 

Mean of peak stress eq. 5 1640 70 

Standard deviation of peak stresses eq. 6 1.945e-04 2.0813e-03 

 

4 CONCLUSION AND OUTLOOK 

The effects of random fibre waviness on in-plane failure surface of fibre reinforced 

composites has been explored using finite element method using a homogenized 

representation of fibre-matrix composite material. The differences between the post peak 

behaviour of idealized and random form of waviness have been highlighted and compared to 

well-known Budiansky [6] formula. A detailed RVE study over a large range of model sizes 

to find the optimum RVE was accomplished. Furthermore, the concept of probabilistic failure 

surfaces using the current approach has been demonstrated. The results confirm that 

compressive strength is highly sensitive to applied shear loads. The shape of the failure 

surface is in accordance with the one shown by Basu et. al. [21]. In the follow-up work, 3D 

probabilistic failure surfaces under multi-axial loadings will be presented. Size effect studies 

and upscaling from micro to macro results are also to follow. 
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