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Abstract: This paper presents a sequential hybrid approximate optimization (SHAO) algorithm 
suitable for structural design optimizations. A hybrid approximate model is introduced and 
further employed in predicting structural analyses more accurately while also requiring 
significantly fewer training samples. Furthermore, an adaptive sampling strategy is utilized to 
create a balance between its ability to locate the global optimum and computational efficiency 
within the optimization process. Consequently, the optimal searching efficiency of the SHAO 
algorithm is substantially enhanced. Efficiency and reliability of the proposed method are 
demonstrated through several benchmark structural design cases. Numerical results herein 
obtained reveal the proposed SHAO becomes more efficient when compared to conventional 
SAO and most existing meta-heuristic methods in terms of quality of solution, computational 
cost and convergence rate. 

1 INTRODUCTION 

Over the years, optimization has been recognized as an inseparable component of structural 
design [1]. Large number of design variables, large domain of search space and greater number 
of design constraints needed to be controlled have shown to be the major limiting factors 
towards performing optimum design within a reasonable time frame. Despite these 
shortcomings, the desire for optimal structures are continually on the increase. Within the past 
decades, a number of optimization algorithms were extensively utilized for structural 
optimization schedules, amongst these are design optimizations with meta-heuristics algorithms 
[2]. Meta-heuristics algorithms, such as genetic algorithms (GA) [3], simulated annealing (SA) 
[4], particle swarm optimization (PSO) [5] [6], ant colony algorithm (ACO) [7] and differential 
evolution (DE) [8] are typically nature inspired methods, where their working principles tend 
to mimic natural phenomena [9]. State-of-the-art reviews of these algorithms as well as their 
various applications towards structural optimization problems are clearly outlined in 
Refs.[2][10]. Highly different from gradient-based optimization algorithms, the evolutionary-
based algorithms do not require gradient based search and they offer great adaptability to a large 
range of diverse problems. The stochastic nature of evolutionary-based algorithms enables such 
algorithms to be more likely and better at finding good and acceptable solutions for complicated 
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optimization problems. Due to their robust and reliable search features, they efficiently proffer 
solutions for practical structural design optimization problems. 

Engineering optimizations for large-scale systems are generally complex, sophisticated and 
highly time-consuming. Despite the advantageous characteristics of meta-heuristics algorithms, 
their slow rate of convergence towards the optimum is often conceived as a major downside of 
its technique and applicability for realistic structural optimization problems. A large number of 
function evaluations are usually required to find the global optimum via the meta-heuristics 
algorithms. In general, a good and acceptable structural optimization algorithm is required to 
possess reduced computational cost, generality, robustness, and high accuracy [11].  

Recently, surrogate models are employed, thereby, further playing key roles towards 
efficiently solving design optimization problems [12]. Surrogate-based optimization (SBO) [13] 
is an effective approach for design of computationally expensive models such as those found in 
aerospace systems involving aerodynamics, structures and propulsion systems, etc. [14]. The 
sequential approximate optimization (SAO) [15]-[17] strategy has been recognized as one of 
the most attractive approach for engineering optimization. Unlike the classical surrogate -based 
optimization procedure summarized in [17], the SAO algorithm initially conducts a small-size 
design of experiment, using some surrogate model to further construct a surrogate model. The 
surrogate model global optimum is found by meta-heuristics methods, and the surrogate models 
are continuously updated through addition of new sampling points by an elaborate sampling 
strategy until a specified termination criterion is satisfied. SAO has been applied in numerous 
structural design optimization problems [17] and has proven to be an effective method. 

The effectiveness of a successful SAO algorithm depends to a large extent on the 
construction and continuous updating of the surrogate model. In the implementation of a 
standard SAO, the link between design objectives and design variables are treated as a ‘black 
box’, where no prior knowledge about the process is assumed and subsequent manipulation is 
aimed at developing a surrogate model based only on observations of its input-output behavior. 
Hence, the SAO algorithm spends excess function evaluations in order to construct surrogate 
models accurate enough to“learn” the frequently complex dynamic behavior of the ‘black-box’ 
process, which inevitably reduces the optimal searching efficiency.  

In this study, a hybrid approximate model is proposed, which focuses on imposing some 
prior knowledge of the structural analysis process on construction of the surrogate model in 
order to enhance the efficiency.The following sections of this paper are structured as: Section 
2 provides the mathematical formulation of the considered structural design optimization 
problem and elaborates on the proposed sequential field approximate optimization (SHAO) 
specialized for structural design optimization. In Section 3, performance of the proposed 
algorithm is investigated by several test cases. Section 4 provides a brief conclusion. 

2 SEQUENTIAL HYBRID APPROXIMATE OPTIMIZATION 

2.1 Formulation of the structural design optimization problem 

The structural optimization problem considered for this paper is in the following nonlinear 
programming form. 
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Find the design variables 1 2 min, max,{ , ,..., }, 1,2,...,n i i ix x x x x x i n   X  to minimize: 

 ( )M X   (1) 

satisfying 

 (displacement constraints)L U     (2) 

 (stress constraints)L U     (3) 

L and U are superscripts denoting lower and upper bounds, respectively. The lower and upper 
bounds are usually pre-assigned parameters. 

2.2 Sequential approximate optimization (SAO). 

SAO initially conducts a small-size design of experiment (DOE), using various approximate 
techniques to construct a surrogate model. The global optimum of the surrogate model is then 
found by optimal optimization methods such as meta-heuristics algorithms. The SAO algorithm 
terminates when a specified termination criterion is satisfied, e.g., when no further improvement 
of the surrogate model is observed or the maximum number of iterations are reached. Otherwise, 
the surrogate model is updated by repeating the procedure of adding points to the sample set 
adaptively and sequentially. The sampling strategy is structured to decide where to add new 
sampling points and how the approximation model is refined. This iterative process converges 
to a much higher accurate global optimum after far fewer function evaluations when compared 
to the meta-heuristics algorithms. 

The SAO algorithm has been recognized as one of the most attractive approach for 
engineering optimization, however, it is worthwhile emphasizing once more that in the standard 
SAO, a black-box surrogate model of the entire structural analysis process is constructed. The 
goal is to develop a process model based only on observations of its input (design variables)-
output (objective and constraints) behavior and no prior knowledge about the structural 
simulation process is utilized. 

2.3 Description of proposed SHAO 

2.3.1 Hybrid approximate model for structural analysis 
In the standard SAO procedures, surrogate models are usually used to develop the black-box 

models. Carrying out a surrogate without prior knowledge of the process has often proved 
successful and oftentimes is the only possible approach especially when knowledge of the 
process is entirely unavailable. However, for the structural analysis model illustrated in section 
2.1, its interior process structure is not completely unobservable. It is known that the structural 
simulation process consists of an FEA stage and the post processing stage, and both stages 
perform different tasks and possess different computational complexities. Therefore, some 
well-assessed phenomenon can be described by fundamental theoretical approach, while some 
others, being very difficult to interpret, can be modeled by means of rather simple “cause-effect” 
models. Based on this principle, we make a difference between the two stages of structural 
analysis process.  
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As shown in Fig.1, the FEA stage is performed in order to calculate the physical field of 
displacements and stresses, which is usually time-consuming and hard to interpret, thus 
surrogate models are needed to be imposed within this stage. Unlike the conventional ‘black-
box’ approximate models, a field approximate model is established by constructing a surrogate 
model of the displacement for each node and the stress for each element. The field approximate 
model is used to surrogate the FEA stage and in predicting the physical field of displacements 
and stresses. The post processing stage contains manipulations such as linear superposition and 
max, which can be implemented analytically without computational costs. Therefore, a real 
model of the post processing stage instead of a surrogate model is implemented to obtain the 
values of the objective and constraints from the outcomes of the field approximate model. 
Finally, the field approximate model of the FEA and the real model of the post processing stage 
constitutes a hybrid approximate model used to minimize the uncertainty in existence by the 
use of solely surrogate models. 

 

Figure 1: The hybrid approximate model 

The hybrid approximate model combines a partial first principles model, which incorporates 
the available prior knowledge about the process being modeled, with the field approximate 
models which serve as estimator of unmeasured process parameters that are difficult to model 
from first principles. This produces combined models that are more reliable, while also 
generalizing and predicting more accurately compared to standard black-box surrogate models. 
The proposed field approximate model within the hybrid model are restricted to modeling terms 
for which a priori models are difficult to obtain. Of equal importance is the fact that significantly 
less data are required for training hybrid neural networks. Thus, the hybrid approximate model 
gives far better approximation efficiency for the same number of training data than the standard 
‘black-box’ models. 
2.3.2 The proposed SHAO algorithm 

In this section, hybrid approximate models are introduced to enhance the standard SAO 
strategy, and a sequential hybrid approximate optimization (SHAO) strategy is proposed. The 
General framework of the SHAO method is shown in Fig.2: 
Step 1: Design of Experiments (DOE) 

Suppose the dimensionality of X is n , then the Optimal Latin Hypercube Design (OLHD) 
method is employed to sample N ( 2N n ) points in the feasible domain of X. The points 
sampled are evaluated by invoking the FEA module to obtain the corresponding stress field and 
displacement field simultaneously, which are formulated as follows: 
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Step 2: Hybrid surrogate model 

Based on the calculated vectors of delta and sigma in (4), surrogate models ˆ ( )i X

( 1,2, , )i I   for each node and ˆ ( )( 1, 2, , )j j J  X for each element are constructed using 

the RBF method. The field approximate model is presented as follows: 

 1 2
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Figure 2: General framework of the SHAO method 

After the field approximate model is constructed, the objective and constraints are obtained 
through the following theoretical equations: 
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Step 3: Optimization 
The objective and constraints are calculated through the field approximate model. 

Computational costs of the surrogate models in the field approximate model are rather low, 
hence, any meta-heuristics algorithm can be employed to solve the optimization problem, and 
the deferential evolution (DE) algorithm is chosen in this paper because of its outstanding 
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performance. DE is originally credited to Storn and Price. Excellent surveys on the multi-
faceted research aspects of DE can be found in journal articles. DE optimizes a problem by 
maintaining a population of candidate solutions and creating new candidate solutions by 
combining existing solutions according to its simple formulae, further keeping whichever 
candidate solution possess the best score or fitness on the optimization problem at hand. In this 
way the optimization problem is treated as a black box that merely provides a measure of quality 
given a candidate solution and the gradient is therefore not needed. 
Step 4: Termination criteria 
   The SHAO is terminated under the following criteria: 

(i) If the relative distance between the optimal solutions of two successive iterations is below 
1%, then evaluate criterion (ii). Otherwise, advance SHAO to the Sampling stage; 

(ii) If the relative error e , formulated as eq.(7), is less than 0.1%, then convergence is reached 
and the proposed SAO algorithm is terminated. Otherwise, advance SHAO to the Sampling 
stage. 
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where î is displacement predicted by the surrogate model for the ith node and ˆ j the stress 

predicted by the surrogate model for the jth element;   and   are mean values of the true 
responses computed from the deterministic FEA module. 
Step 5: Sampling strategy 

Sampling strategy is highly critical for a successful SAO. A number of sampling strategies 
have been applied to the SAO algorithm. In the adaptive sampling strategy, the simplest way 
of exploitation sampling is to find the optimum of the surrogate model ( )s x and the pure 

exploration is to maximize the minimum Euler distance ( )d x between sampling points, which 

is given by  

 ( ) ( )( ) min( ( ) ( )) ( 1,2, , )n T n n
i id i N  （ ）x x - x x - x  (8) 

where ( )nN  is the number of sampling points before the thn sequential sampling. The adaptive 

sampling method of solving the multi-objective optimization problem (9) is therefore proposed 
to balance the exploitation and exploration. 

 
( )

min max

( )

: ( ), ( )

. . ( ) 0 1, 2, ,

n

n
i

max s d

s t g i l

 

  

x x x x x

x
 (9) 

where l  is the number of inequality constraints of the original optimization problem, ( ) ( )ns x is 

the meta-model constructed before the thn sequential sampling. The optimal solution of (9) 
together with the real response evaluated by the original model will be regarded as a new 
sampling point and further used to update the surrogate model.  
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To simplify the solving process and obtain a preferable solution, the objective ( )d x is turned 

into a constraint and the multi-objective problem is thus converted to a single-objective 
optimization problem as follows: 

 

( )
min max

( )

0

: ( )

. . ( ) 0 1, 2, ,

( )

n

n
i

max s

s t g i l

d d

 

 





x x x x

x

x

 (10) 

In this paper, the determination of 0d is given by: 

 0 min( ( ) ( )) ( , 1,2, , , )Td i j M i j  i j i jx - x x - x  (11) 

where M is the number of sampling points before the thn sequential sampling. It is concluded 

from Eq.(11) that when sampling points are sparse, the value of 0d ought to be great. 
Knowledge of the response space is relatively inadequate. Hence, the sampling strategy will 

emphasize particularly on exploration. As more points are sampled, the value of 0d  will 
inevitably decrease. Meanwhile, knowledge of global response space accumulates and 

promising regions for global optimum will be located easily. Therefore, 0d will need a relatively 
small value to bring exploitation over exploration. New sampling points are further added 
around such promising regions in order to precisely approximate for global optimum while 
details of non-promising regions are ignored. In this way, the number of true function calls are 
remarkably reduced, which is of great significance for computational-intensive structural 
design optimization tasks.  

The adaptive sampling strategy is effective in balancing exploration and exploitation, 
allowing high-efficiency searching of the global optimum during the optimization process. The 
adaptive sampling strategy substantially reduces the number of evaluations of the true functions 
required to find the optimal solutions. 

3 Benchmark case studies 

In this section, two well-known truss structures are optimized by the proposed SHAO 
algorithm. The results obtained are subsequently compared to solutions from equally advanced 
and well documented optimization methods so as to demonstrate the efficiency of this proposed 
method. 

3.1 Case study 1: 72-bar truss system 

The second study is carried out using the proposed SHAO algorithm to execute an 
optimization problem for a 72-bar spatial truss structure as shown in Fig. 3. The material 
properties, as well as node and member numbering system are as shown in Fig.3. There are 72 
truss elements, and these are divided into 16 groups as shown in Table I. This grouping reduces 
the number of design variables to 16 member groups and their areas vary from 0.1 to 2.5 in2. 
The material density is 0.1 lb/in3 and the modulus of elasticity is 104 ksi. Stress limitations of 
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the members are ±25,000 psi. All nodal displacements must be smaller than ±0.25 in. The 
structure is subjected to two loading conditions, as detailed in Table II.  

 
Figure 3: A 72-bar spatial truss structure. 

Table 1: 72-bar truss member area groups. 

Area 
group 

Truss members 
Design 

variables 

1 1, 2, 3, 4 x1 

2 5, 6, 7, 8, 9, 10, 11, 12 x2 

3 13, 14, 15, 16 x3 

4 17, 18 x4 

5 19, 20, 21, 22 x5 

6 23, 24, 25, 26, 27, 28, 
29, 30 

x6 

7 31, 32, 33, 34 x7 

8 35, 36 x8 

9 37, 38, 39, 40 x9 

10 41, 42, 43, 44, 45, 46, 
47, 48 

x10 

11 49, 50, 51, 52 x11 

12 53, 54 x12 

13 55, 56, 57, 58 x13 

14 59, 60, 61, 62, 63, 64, 
65, 66 

x14 

15 67, 68, 69, 70 x15 

16 71, 72 x16 
  

Table 2: 72-bar truss loading cases. 

Load case Node Fx [kips] Fy [kips] Fz [kips] 

1 1 5.0 5.0 -5.0 

2 

1 0.0 0.0 -5.0 
2 0.0 0.0 -5.0 

-5.0 3 0.0 0.0 -5.0 
-5.0 4 0.0 0.0 -5.0 
-5.0 

Table 3:  Optimization results for the 72-bar truss. 

Design 
Variables 

SHAO 
(The best) 

SHAO 
(The worst) 

SAO ALPSO PSO HBB-BC ACO 

x1 [in2] 0.156 0.159 0.157 0.157 0.162 0.157 0.156 

x2 [in2] 0.551 0.512 0.549 0.546 0.509 0.542 0.550 

x3 [in2] 0.408 0.43 0.406 0.405 0.497 0.413 0.390 

x4 [in2] 0.560 0.554 0.555 0.566 0.562 0.576 0.592 

x5 [in2] 0.527 0.478 0.513 0.520 0.514 0.518 0.561 

x6 [in2] 0.514 0.492 0.529 0.518 0.546 0.521 0.492 

x7 [in2] 0.10 0.10 0.100 0.100 0.100 0.100 0.100 

x8 [in2] 0.10 0.10 0.100 0.100 0.110 0.101 0.107 

x9 [in2] 1.290 1.233 1.252 1.258 1.308 1.258 1.303 
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Design 
Variables 

SHAO 
(The best) 

SHAO 
(The worst) 

SAO ALPSO PSO HBB-BC ACO 

x10 [in2] 0.515 0.507 0.524 0.513 0.519 0.503 0.511 

x11 [in2] 0.10 0.10 0.100 0.100 0.100 0.100 0.101 

x12 [in2] 0.10 0.10 0.100 0.100 0.100 0.100 0.100 

x13 [in2] 1.881 2.399 1.832   1.898 1.743 1.904 1.948 

x14 [in2] 0.506 0.504 0.512   0.513 0.519 0.516 0.508 

x15 [in2] 0.10 0.10 0.100 0.100 0.100 0.100 0.101 

x16 [in2] 0.10 0.100 0.100 0.100 0.100 0.100 0.102 

Max. stress 
[psi] 

24958.61 24999.67 24943.87 24999.67 24485.67 24948.16 24939.59 

Max. disp.[in] 0.24994 0.2500 0.24992 0.2500 0.2497 0.2501 0.2500 

Weight [lb] 379.93 383.13 379.90 379.61 381.91 379.66 380.24 

No. of analyses 138 153 252 >103 N/A 13200 18500 

The optimization problem is solved by the proposed SHAO algorithm with 50 initial 
sampling points. The termination criterion is satisfied after 88 iterations, as revealed by 
variation of relative error shown in Fig.4. Observing Fig.4, we notice that the approximate 
accuracy of the physical fields improves with the optimization iterations. Evolution of the 
objective function is displayed in Fig.5. Table III summarizes results for the 72-bar truss 
problem, and compares this with different optimization techniques. For proper comparison, the 
best and worst results from twenty independent SHAO trials are also listed. 

 
Figure 4: Convergence of SHAO for 72-bar truss optimization 

 
Figure 5: The objective function history. 

3.2 Case study 2: 582-bar tower truss system 

The final study carried out applies the SHAO algorithm to a 582-bar tower truss system as 
shown in Fig.6. The 582 structural members are categorized as 32 independent size variables. 
The lower and upper bounds on size variables are taken as 1.55 in2 (10 cm2) and 155.0 in2 (1000 
cm2), respectively. A single load case is considered consisting of lateral loads of 5.0 kN (1.12 
kips) applied in both x- and y-directions and a vertical load of 30 kN (6.74 kips) applied in the 
z-direction at all nodes of the tower. Modulus of elasticity is 29,000 ksi (203.89 GPa), allowable 
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tensile and compressive stresses are 100MPa and the limitations of nodal displacements are no 
more than 8.0 cm in all directions. 

 
Figure 6: A 582-bar spatial truss structure. 

Table 4:  Optimization results for the 582-bar truss. 

Design 
Variables 

SHAO 
(The best) 

SHAO 
(The worst) 

SAO DE 

x1 [cm2] 10.01 14.22 10.13 16.47 
x2 [cm2] 164.72 160.18 162.22 171.02 
x3 [cm2] 21.98 21.83 23.33 20.40 
x4 [cm2] 151.91 143.05 145.86 143.22 
x5 [cm2] 20.68 22.93 18.51 23.24 
x6 [cm2] 10.00 10.00 10.70 10.00 
x7 [cm2] 116.84 113.86 130.25 120.42 
x8 [cm2] 21.65 32.46 15.66 30.72 
x9 [cm2] 10.00 10.00 10.01 10.00 
x10 [cm2] 103.85 125.32 98.53 103.55 
x11 [cm2] 16.07 31.55 15.67 20.38 
x12 [cm2] 113.98 107.58 128.84 110.83 
x13 [cm2] 183.58 173.43 178.87 183.14 
x14 [cm2] 143.46 132.98 151.83 134.22 
x15 [cm2] 186.02 161.16 193.86 170.82 
x16 [cm2] 29.13 44.74 32.63 28.89 
x17 [cm2] 152.25 152.83 153.33 153.65 
x18 [cm2] 20.70 22.14 20.46 25.61 
x19 [cm2] 10.00 10.00 10.13 10.00 
x20 [cm2] 108.84 90.11 109.81 98.21 
x21 [cm2] 19.30 18.40 19.22 19.72 
x22 [cm2] 10.13 37.79 10.24 33.77 
x23 [cm2] 55.60 62.41 61.77 59.48 
x24 [cm2] 17.00 16.96 15.92 15.34 
x25 [cm2] 10.00 10.00 10.07 10.00 
x26 [cm2] 28.33 33.35 27.73 30.40 
x27 [cm2] 16.35 18.42 10.07 16.34 
x28 [cm2] 10.00 10.00 10.01 10.00 
x29 [cm2] 10.00 10.00 10.15 10.00 
x30 [cm2] 10.00 12.64 10.43 13.35 
x31 [cm2] 10.00 10.00 10.65 10.01 
x32 [cm2] 10.00 10.00 10.49 10.00 

Max. stress [Mpa] 76.01 78.5 76.53 77.7 
Max. disp.[cm] 8.00 7.96 8.00 7.96 

V(m3) 15.63 16.37 16.13 15.67 
No. ofanalyses 419 433 586 30000 

 

 
Figure 7: Convergence of SHAO for the 582-bar truss 

optimization 

 
Figure 8: The objective function history. 



Donghui Wang, Zeping Wu, Wenjie Wang And Weihua Zhang. 

 

 
 

11

This optimization problem is solved using the proposed SHAO algorithm with 64 initial 
sampling points. The termination criterion is satisfied after 355 iterations as revealed by the 
variation of relative error shown in Fig.7, and evolution of objective function as displayed in 
Fig. 8. To verify the effectiveness of this proposed method, SAO [17] and DE [18] are also 
utilized to solve the same problem. For SAO, 64 initial sampling points are used to initialize 
the optimization, while for the DE, population of 50 individuals are designated. Table IV 
presents the optimal results obtained by the proposed SHAO, SAO and DE, respectively. 

4 CONCLUSIONS 

This research paper presented a SHAO approach suitable for structural design optimization 
tasks. This approach significantly reduces the computational costs normally associated with 
structural design problems. With the existing trend of utilizing structural analysis processes as 
a seemingly ‘black box’ manner within the conventional SAO, this proposed SHAO breaks 
down the process and disintegrates it into differentiated stages: a time-consuming and hard-to-
interpret FEA stage, and the well-assessed, easy-to-handle post processing stage. The former is 
surrogated by field surrogate models and the latter is handled in a fundamental theoretical 
manner. This manipulation produces a hybrid model that enables capturing of more complex 
dynamic behaviors of the true structural analysis process when compared to the ‘black-box’ 
prediction models. The hybrid model projects the error signals to a subspace that is easier to 
sufficiently explore with small number of training points and can further generalize and predict 
more accurately when compared to standard ‘black-box’ surrogate models. Thus, the efficacy 
and efficiency of the optimization process is improved substantially. 

The proposed method was evaluated using two benchmark test cases; the 72-bar truss system 
and the 582-bar tower truss system. Compared with results of previously published studies, the 
SHAO algorithm yielded equivalent or much better objective values for the tested structural 
design optimization tasks. Furthermore, the number of true function evaluations required to find 
the same global optima was significantly reduced by multiple orders of magnitude, which 
further highlights the applicability of the proposed SHAO algorithm towards engineering 
structural design optimization problems. 
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