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Abstract. Thanks to their damping properties, elastomer materials are commonly used
in aeronautics and aerospace industry in order to manufacture damping devices, especially
in terms of joints between sub-systems of mechanical assembling. In aeronautics, these
damping joints can be used to protect electrical or optical on-board equipments from
external noise and vibration sources. These joints should then deal with two contradictory
aims: transmitting static loads and damping vibrations. The purpose of this work is to
develop an efficient topology optimization tool for rubber devices.

1 INTRODUCTION

Thanks to their damping properties, elastomer materials are commonly used in aero-
nautics and aerospace industry in order to manufacture damping devices, especially in
terms of joints between sub-systems of mechanical assembling. In aeronautics, these
damping joints can be used to protect electrical or optical on-board equipments from
external noise and vibration sources. These joints should then deal with two contradic-
tory aims: transmitting static loads and damping vibrations. The purpose of this work
is to develop a topology optimization tool for rubber devices. Two aspects should be
considered:

• topology optimization based on a static criteria,

• topology optimization based on a dynamic criteria taking into account visco-elastic
damping of the rubber device.

This paper concentrates on the first part: developing a topology optimization code
considering a static criteria. In order to achieve this aim, a modified Simple Isotropic
Material with Penalization (SIMP) method, with a static compliance criteria is firstly
presented. Two different algorithms are then introduced: the Optimality Criteria (OC)
method and the Method of Moving Asymptotes (MMA). An in-house finite element code
is developed for any geometry (2D and 3D), any mesh, and for any boundary conditions
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in terms of force and displacement. It is developed using the Python language for the
global level and the Fortran language for the elemental level, while the meshes as well as
the post-processing are done with Gmsh [8].

A validation case based on a literature benchmark (2D) is then computed and compared
to the reference solution. Finally, a rubber device (3D) is optimized using a static criteria.

2 TOPOLOGY OPTIMIZATION USING A STATIC CRITERIA

Several optimization criteria can be chosen for a static mechanical problem depending
on the targeted aim, such as for instance: mass, stress or displacement minimization. In
this study, the minimization of the external forces work (compliance) is considered, under
a final prescribed volume constraint. The compliance c and the volume constraint v are
function of the material density distribution x and the purpose is to find the optimal set
of x = [x1, . . . , xn]T that minimizes the compliance (n is the number of elements in the
domain). The elemental Young’s modulus Ei is, in the modified SIMP approach, written
as follow:

Ei(xi) = Emin + xpi (E0 − Emin), xi ∈ [0, 1] (1)

where E0 is the true stiffness of the material, Emin is chosen as non-zero so that to avoid
singularity in the finite element stiffness matrix, and p is a penalization factor allowing
to reach more easily xi = 1 (presence of material) and xi = 0 (void).

Furthermore, to avoid check-board patterns typical from SIMP method [1], a pseudo-
density x̃i is introduced. It corresponds to the density of an element xi ponderated
by the elements densities in its neighbourhood Ni (including element i) and the factor
Hij = rmin − dij where dij is the distance between the centres of element i and an other
element j in Ni, such that:

x̃i =

∑
j∈Ni

Hijvjxj∑
j∈Ni

Hijvj
(2)

where vj is the volume of element j and rmin is an influence radius arbitrarily chosen by
the user.

2.1 Simple Isotropic Material with Penalization method (SIMP)

Using Eq. (1) the global stiffness matrix can be expressed as follow:

K(x̃) =
n∑
i=1

[Emin + x̃pi (E0 − Emin)]K0
i (3)

where K0
i is the global stiffness matrix corresponding to the assembly of the elemental

stiffness matrices k0
i , themselves expressing the local stiffness with a unit Young’s modulus.

2



S. Burri, A. Legay and J-F. Deü

The general optimization problem can be written as follow:

min
x̃

c(x̃)

with : c(x̃) = U(x̃)TF
subject to : v(x̃) = x̃Tv − αV0 ≤ 0

0 ≤ x̃i ≤ 1
K(x̃)U(x̃) = F

(4)

where v = [v1, . . . , vn]T is the vector of elemental volumes, α the prescribed volume
fraction, V0 the initial volume of the domain, U(x̃) the nodal displacements vector and F
the external nodal forces vector.

As in [3], the derivatives of the functions c(x̃) and v(x̃) are written as follow:

∂c(x̃)

∂xe
=
∑
i∈Ne

∂c(x̃)

∂x̃i

∂x̃i
∂xe

(5)

∂v(x̃)

∂xe
=
∑
i∈Ne

∂v(x̃)

∂x̃i

∂x̃i
∂xe

(6)

where ∂x̃i
∂xe

can be deduced from Eq. (2):

∂x̃i
∂xe

=
Hieve∑
j∈Ni

Hijvj
(7)

It follows from the previous equations that the derivative of the compliance with respect
to the pseudo-density x̃i is given by:

∂c(x̃)

∂x̃i
= −ui(x̃)T

[
px̃p−1i (E0 − Emin)k0

i

]
ui(x̃), (8)

where ui(x̃) is the elemental displacement, while the derivative of the volume constraint
with respect to the pseudo-density x̃i is given by:

∂v(x̃)

∂x̃i
= vi (9)

2.2 Optimality Criteria method (OC)

A common numerical algorithm for optimum reaching is the standard optimality crite-
ria (OC) method (Bendsøe, 1995). This method is based on Lagrange multipliers which
can be written from the objective c(x̃) and constraint v(x̃) functions:

L = c(x̃) + λv(x̃) (10)

where λ denotes the Lagrange multiplier associated with the volume constraint. It is
important to note that the ”+” sign is due to constraint’s convexity. The minimization
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is reached when the derivatives of the Lagrangian with respect to x̃e and with respect to
the Lagrange multiplier λ are equal to zero:

∂L

∂xe
=

∂c(x̃)

∂xe
+ λ

∂v(x̃)

∂xe
= 0 (11)

∂L

∂λ
= x̃Tv − αV0 = 0 (12)

From Eq. (11), the optimality condition Be = 1 [4], can be deduced:

∀e ∈ [1, · · · , n] Be =
−∂c(x̃)

∂xe

λ∂v(x̃)
∂xe

(13)

For each step and each design variable xe,
∂c(x̃)
∂xe

and ∂v(x̃)
∂xe

are known. A dichotomy
algorithm is then used in order to find λ such that Be = 1. As soon as Be = 1, the set of
x̃ may be the optimal solution if the prescribed volume is ensured.

It is important to notice that, considering Eq. (8) and Eq. (9), ∂c(x̃)
∂xe

is always negative
in static, but not in dynamic using the dynamic compliance formulation described in [4].

As ∂v(x̃)
∂xe

is always positive, Be is always positive through the iterative process (λ ≥ 0 by
definition). OC is then well designed to solve static compliance problems but not for a
dynamic compliance problems because Be can be negative.

The update of the new variable xe follows the original paper (Sigmund, 2001):

xk+1
e =


max(0, xe −m) if xeB

η
e ≤ max(0, xe −m),

min(1, xe +m) if xeB
η
e ≥ min(1, xe +m),

xkeB
η
e otherwise,

(14)

where k is the kth-iteration, m is a positive move-limit restraining the speed of the con-
vergence so that to stay in the admissible domain and η (= 1/2) is a numerical damping.
The optimum solution is reached when xk+1

e − xke is less than a chosen small value.

2.3 Method of Moving Asymptotes (MMA)

Since OC is not able to deal with dynamic optimization problems, another numerical
algorithm has to be used. The chosen one in this work is the method of moving asymptotes
(MMA) introduced by Svanberg [5].

MMA uses convex approximation functions [6] in order to represent, in each iteration,
the true functions of the problem. Two approximations f̃kc (x̃) and f̃kv (x̃) are generated,
respectively based on c(x̃) and v(x̃), such as:

f̃kg (x̃) = gk(x̃)− rk =
n∑
i=1

(
pki

uki − x̃i
+

qki
x̃i − lki

)
(15)

where g = {c, v}, rk is a residual resulting from the difference between f̃kg (x̃) and gk(x̃),
uki and lki are the so-called moving asymptotes which vary in each iteration according to
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xi, and finally pki and qki are respectively functions of ∂g(x̃)
∂xe

> 0 and ∂g(x̃)
∂xe

< 0. Thus, MMA

is not impacted by the sign of ∂g(x̃)
∂xe

and can properly be used in the dynamic case.
As OC criteria, MMA is also a dual method using Lagrange multipliers. However, the

considered Lagrangian takes into account the design variables bounds α and β which are
restrictions of typical bounds of xi (0 and 1) in order to increase the robustness during
the convergence process:

L = f̃kc (x̃) + λ(f̃kv (x̃) + rk) +
n∑
i=1

[
ξ(xi − α) + η(β − xi)

]
(16)

Derivating Eq. (16) by the inner variables (x̃, λ, ξ, η) and relaxing the optimality
conditions, a Newton scheme as below is used to compute the next iteration:

ω`+1 = ω` + τ ·∆ω` (17)

where ω` = (x`, λ`, ξ`, η`) and ∆ω` = (∆x`,∆λ`,∆ξ`,∆η`). More details about the full
algorithm are available in Svanberg’s papers (Svanberg, 1987 & 2007).

3 VALIDATION AND APPLICATIONS

3.1 Validation

In order to validate the implementation of the OC and MMA methods in our in-
house code, a test-case taken from [2] is solved. This problem, named the MBB beam,
is described in Fig. 1. As in [2], the mesh is composed of 60×20 4-nodes quadrangle
elements, the penalty factor p is taken to 3, the neighbourhood is defined with rmin = 2.4
and the final prescribed volume fraction is equal to 50% of the initial volume domain.

The final obtained shape (Fig. 2) is very similar to the one presented in [2]. More-
over, when comparing the global compliance values for the OC method, both are almost
equivalent: 216.81 for [2], 216.60 with the house code. The MMA method gives a similar
optimized shape (Fig. 2) and a slightly different compliance, equals to 218.15.

~F

Figure 1: 2D MBB beam - Design domain, including boundary conditions
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Figure 2: 2D MBB beam - Optimized topology of the beam - Left: OC method - Right: MMA method
(red: xe = 1, blue: xe = 0)

rigid faces in contact with the sub-structures

~x

~y

~z

M

C

Figure 3: Initial design domain of the rubber device

3.2 Application to a rubber device

3.2.1 Presentation

The proposed application is the topology optimization of a device used to dissipate
the transmitted vibrations between two sub-structures. A complete dynamical study of a
system made of a structure supported by four devices can be found in [7]. In this present
work, as a first step, the optimization of the device is done using a static compliance
criteria.

The design domain as well as the two faces of the device in contact with the two
different sub-structures are presented on Fig. 3. Since the device is in contact with much
more rigid materials (typically metal) than its constitutive material (typically rubber),
the upper and lower faces are considered as rigid bodies. Thus, each face has 6 degrees
of freedom (3 translations and 3 rotations), and each node M of a face is linked to these
6 dofs:

−→u M = −→u C +
−−→
MC ∧

−→
Ω (18)

where −→u M is the displacement of the node M , C is the centre of the face, −→u C is the

displacement of the centre of the face (3 translations) and
−→
Ω corresponds to the rotation
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Figure 4: Topology optimization of the rubber device for a bending load - Design domain (left) and
final solution (right)

of the interface (3 rotations). This relation allows to write any displacement of an interface
pointM as the product between a transfer matrix and an augmented vector of the interface
centre dofs in an orthonormal system of coordinates (~x, ~y, ~z):

uMvM
wM

 =

1 0 0 0 (zM − zC) (yC − yM)
0 1 0 (zC − zM) 0 (xM − xC)
0 0 1 (yM − yC) (xC − xM) 0



uC
vC
wC
Ωx

Ωy

Ωz

 , (19)

where (xM , yM , zM) and (xC , yC , zC) are the coordinates of points M and C, (uM , vM , wM)
and (uC , vC , wC) are the displacements of points M and C and (Ωx,Ωy,Ωz) are the inter-
face rotation components. All interface node’s dofs are then eliminated from the global
finite element model.

The material properties of the rubber device are given by:

• Young modulus E= 0.5 MPa

• Poisson’s coefficient ν = 0.45

Finally, the mesh is composed of 33,516 8-nodes hexahedral elements, the chosen
penalty factor p is 3, the neighbourhood is defined with a rmin calculated for each el-
ement such that about 10 to 30 elements are in the neighbourhood of the considered
element. The final prescribed volume fraction is equal to 0.4.

3.2.2 Results and discussion

The first case is a bending load: the lower face is fixed and a torque along the transverse
axis ~x of the device is applied on the upper face. Figure 4 both shows the design domain
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Figure 5: Topology optimization of the rubber device for a torsion load - Design domain (left) and final
solution (right)

with the load and the final optimized shape. The final solution has two different holes.
The one on the longitudinal axis ~z is due to the fact that faces are stiffen. The second one,
on the transverse axis ~x, is due to bending solicitation: the stress is more important on the
extremities (where material is present) than in the middle (where material is removed).

The second case is a torsion load: the lower face is fixed, and a torque along the axis
~z of the device is applied on the upper face. Figure 5 both shows the design domain with
the load and the final optimized shape. The final solution has a longitudinal hole due to
the fact that the stress is more important at the external skin of the cylinder than in the
middle. The hole is wider in the middle of the device, due to the rigid faces assumption.

4 Conclusion and ongoing work

This work concerns the topology optimization of elastomer damping devices. The OC
and MMA methods have been implemented. The validation case for a static compliance
criteria shows that the implementation has been done correctly. As a first step in the
more global vision of the project, a damping device is optimized in this work with a
static compliance criteria. An ongoing work on vibration damping is performed using a
fractional derivative Zener model of the elastomer [9] and a dynamic compliance [10, 11].
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