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Abstract. A Fast Multipole Boundary Element Method (FMBEM) and a computer
code for 3D elasticity is developed. Higher order boundary elements with quadratic shape
functions, i.e. 8-node Serendipity elements, are applied to the discretization of geometry
and boundary quantities. The numerical integration of boundary integrals, depending
on Kelvin solutions, involves an adaptive subdivision of elements to provide a high accu-
racy of the calculations. The efficiency of the method is evaluated in terms of the model
size, accuracy and execution time by a comparison with Finite Element Method (FEM)
models, with quadratic shape function elements. Models of selected machine components,
with stress concentration, are analysed. For the analysed structures, both methods pro-
vide results with similar accuracy. However, the FMBEM models have by an order of
magnitude lower number of Degrees of Freedom (DOF) compared to the FEM, and can
be analysed within time comparable to the FEM with a direct solver. Thus, the FMBEM
can be competetive to the widely used FEM.

1 INTRODUCTION

The main advantage of the BEM is that in basic problems, for instance linear elasticity,
it only requires the discretization of the boundary [2, 3, 7, 5, 8, 1]. On the other hand,
the matrices arising in the conventional BEM are fully populated and non-symmetric.
Therefore, the method is ineffcient in the analysis of structures with more than a few
thousands degrees of freedom. In the last two decades, novel versions of the BEM aiming
at reducing its computational complexity have been developed. One of them is the fast
multipole boundary element method, FMBEM [10, 9], that is based on the fast multi-
pole method (FMM) [6]. Some of available codes implement constant boundary elements
that allow to use rapid analytical integration [9]. However, it is known that higher order
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boundary elements have advantages over the constant elements. The higher order ele-
ments approximate complex geometry more accurately, provide better convergence rate,
allow to calculate physical quantities in points near to the boundary more efficiently, and
allow to analyse thin-walled structures [15]. In the present FMBEM, Serendipity 8-node
boundary elements with adaptive numerical integration described in [1] are applied. The
present work is a continuation of [13], where the efficiency of the FMBEM applied to
the analysis of structures containing pores was evaluated. In the present work, typical
machine components are analysed, namely a connecting rod and a crankshaft.

2 FAST MULTIPOLE BOUNDARY ELEMENT METHOD
The FMBEM system of equations takes the following form [11]:

Aneary + afar — Bnearz + bfar’ (1)

and is solved iteratively, e.g by the GMRES (Generalized Minimal Residual) method.
The matrices A" and B"** include the integrals of fundamental solutions calculated
directly. They are calculated once and stored in the memory as sparce matrices. The first
matrix is utilized in each iteration to compute the near-field elements in the left hand side
matrix-vector product. Selected elements of the matrix are used as a preconditioner for
the iterative solver. The a™ and bf" vectors include the far-field influence that depend
on the fundamental solutions and unknown and known boundary quantities respectively.
Elements of the vectors are computed by using expansions and translations.

The idea of FMBEM is based on a hierarchical clustering of the collocation points
and boundary elements (Figure 1) and a distribution of potentials over the clusters. The
clustering process is mapped by a tree structure with the whole domain corresponding to
root on level 0 (Figure 2a). Tree nodes at the highest level, that are called leaves, corre-
spond to the smallest clusters. The potentials are integrals depending on the fundamental
solutions and boundary displacements and tractions, that occur in the boundary integral
equation [1, 9]. This idea is realized by the application of multipole expansions for the
far-field potentials. Coefficients of the expansions - multipole moments - are dependent
on the quantities related to the clusters of integration points. Centers of the multipole
moments are shifted to centers of larger clusters (moment-to-moment translation, M2M)
and transformed into moments of a local expansion (moment-to-local translation, M2L).
The centers of the local moments are shifted to centers of smaller clusters (local-to-local
translation, L2L) and to each collocation point. The expansions are applied to the far-
field potentials. The near-field potentials, that involve the influence of the neighbour
clusters, are calculated directly as in the conventional BEM. The system of equation is
solved iteratively. A single iteration involves the following operations for the calculation
of the matrix-vector product:

1. Computation of the near-field potentials by using the coefficients stored in the A™***
matrix, that are calculated directly.

2. Calculation of the multipole moments for leaves.
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3. M2M translations with the upward pass.

4. M2L translations.

5. L2L translations with the downward pass.

6. Calculation of the far-field potentials by using the local series.

In the parallel computations, the tree structure is partitioned in order to define tasks
that are assigned to threads. The partitioning is realized by two lists, that are built for
each thread, that contain a range of nodes at which the above operations are initialized.
In particular, the operations (1), (2), (3) and (6) are initialized using a list that contains
a range of the leaves (List 1 in Figure 2). Operations (4) and (5) are initialized using
List 2 that contains a range of nodes on the level 2. More details on the algorithm and
developed code can be found in papers [11, 12, 13].
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Figure 2: Multipole tree: a) a clustering result, b) parallel computations
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3 NUMERICAL EXAMPLES
3.1 Connecting rod

A model of connecting rod is analysed. Material parameters correspond to steel in the
temperature of 100°C: Young’s modulus £ = 205 GPa and shear modulus G = 78 GPa.
Main dimensions of the part and boundary conditions are shown in Figure 3. The inner
diameter of the big end is equal to 45 mm, and the small end inner diameter equals
24 mm. The distance between bearing axes equals 132 mm. The height of both ends
equals 24 mm. The inner face of the small end is clamped. To the inner face of the big
end, a traction force t,, corresponding to a bearing load is imposed. The force acts in the
direction normal to the face on the part of total angle 120°, and its value is t,, = 26 MPa.

24

132

Figure 3: Selected dimensions and boundary conditions applied to the rod model

Three FEM models, with increasing density of the finite element mesh, are developed
to achieve convergence of the stress results within the tolerance of 1%. The models are
denoted by FEM-1, FEM-2 and FEM-3 respectively. 10-node tetrahedral elements with
quadratic shape functions are used. To assess the mesh quality, an error in geometry
approximation dy is introduced. The error is defined as:

VP V|

dy = | - 100%, (2)

where V is the volume of the original model and V? is the volume of the discretized
geometry. Number of elements, nodes, total number of degrees of freedom (DOF) and the
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error in geometry approximation are listed in Table 1. An FMBEM model is developed
and corresponding parameters are given in the table. 8-node Serendipity elements with
adaptive integration are used. Expansions of order p = 15 are applied. The GMRES
tolerance is set to 10~*. The maximum level of the tree is set to 4. Discretized FEM and
FMBEM models are shown in Figure 4. Displacement and stress results for all models
are shown in Table 2. Displacement and stress distribution maps obtained by FEM-3 and
FMBEM models are shown in Figures 5 and 6 respectively.

Table 1: Details of the discretized models

Model  No. of elements No. of nodes Total no. of DOF dy, %

FEM-1 30549 49 255 147765 0.028
FEM-2 107914 169765 209295 0.009
FEM-3 226 654 350531 1051593 0.006
FMBEM 13009 4337 39024 0.002

The FMBEM model number of DOF is of the order 10* while for the FEM models the
order ranges from 10° to 10°. The FMBEM provides better approximation of geometry
than the finest FEM model (Table 1). The FMBEM displacement and stress values are
within the tolerance of 1% with respect to the converged FEM results (Table 2).

The execution time is investigated. The calculations are performed by using a PC
with the Intel Xeon CPU E3-1246 v3, 3.50 GHz clock. For both FEM and FMBEM, 8
threads are used. For FEM (MSC Patran/Nastran), the calulations are performed by
using default direct and iterative solvers. The execution time for each model is shown in
Table 2. The FMBEM time is longer than the FEM-1 and FEM-2 time, and is shorter
than the FEM-3 time. The FMBEM time is close to the FEM-1 time and the direct
solver.

Table 2: Resultant displacement u, Huber-von Mises stress o,.q and execution time

Model  max(u), mm max(oweq), MPa Direct solver, s Iterative solver, s

FEM-1 0.1798 401.3 265 29
FEM-2 0.1804 401.9 168 162
FEM-3 0.1804 400.9 216 437
FMBEM 0.1795 401.8 - 272
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Figure 4: Part of the discretized model: a) FEM-1, b) FEM-2, ¢) FEM-3, d) FMBEM
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Figure 5: Resultant displacement (mm): a) FEM-3, b) FMBEM
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Figure 6: Reduced Huber-von Mises stress, MPa: a) FEM-3, b) FMBEM
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3.2 Crankshaft

Stress distribution in a crankshaft model is analysed by FEM and FMBEM. Geometry
of the model with main dimension is shown in Figure 7. Material parameters correspond
to steel: Young’s modulus £ = 200 GPa and Poisson’s ratio v = 0.3. Boundary conditions
are shown in Figure 8. On faces A and D, displacements in x and y directions are equal
to zero. On face C, displacement in z direction is equal to zero. On face B, a traction
force corresponding to action of a rod is imposed. The traction force acts in the normal
direction, on a part of the face corresponding to angle 120°. Its value is ¢, = 10.1 MPa.
The resultant force is rotated by 9° with respect to y axis and causes bending and torsion
of the crankshaft (Figure 8b).

45 - 4() — 3) -—

22] ——————————®=

Figure 7: Crankshaft selected dimensions

An FEM model is developed, by using 10-node tetrahedral elements with quadratic
shape functions. The measure of the mesh quality is computed as defined by Equation
(2). The same structure is modeled by the FMBEM with 8-node Serendipity elements.
Parameters of the finite and boundary element meshes are given in Table 3. Detailed
view on the stress concentration region discretized by the finite and boundary elements
is shown in Figures 9a and 9b respectively. For the FMBEM, the expansion degree is set
to 15, the GMRES tolerance is 10~° and maximum tree level is 5.

Table 3: Details of the discretized models

Model  No. of elements No. of nodes Total no. of DOF  dy, %
FEM 569 348 869 429 2608 287 4-107*
FMBEM 29949 89 849 269 547 6-10~*
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(b)

Figure 8: Crankshaft boundary conditions: a) A: u,,u, = 0; B: t =t,; C: u, = 0; D: uy, uy = 0;
b) zy plane section of surface B with the normal traction force ¢,
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Figure 9: Detailed view of the element mesh in the stress concentration region: A) FEM, B) FMBEM

The stress distribution in the crankshaft is analysed (Figure 10). The maximum Huber-
von Mises stress values, with the execution time, are listed in Table 4. For the calculations,
the same computer is applied as for the previous example. Although both the discretized
models approximate the geometry very accurately, the maximum stress calculated by the
FMBEM is by 10 % higher with respect to FEM. The difference is caused by a stronger
stress concentration than that of the previous example. The finite element mesh applied
here is a result of some preliminary research that provided only the FEM convergence
of the stress result within the tolerance of about 4%. The preliminary research is not
presented here due to the article length limitation. The FMBEM result is higher and
more safe. On the other hand, the FMBEM execution time is longer that that of FEM
with the direct solver, by about 15%. Still, the time is comparable to FEM.
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Table 4: Huber-von Mises stress o,.q and execution time

Model  max(cyeq), MPa Direct solver, s Iterative solver, s

FEM 50.59 2337 787
FMBEM 56.52 = 2701

5059
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Figure 10: Huber-von Mises stress, MPa: A) FEM, B) FMBEM
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4 CONCLUSIONS

- The efficiency of the Fast Multipole Boundary Element Method for 3D elastic-
ity, with 8-node Serendipity elements and adaptive integration is evaluated. The
evaluation is performed by a comparison with the Finite Element Method (FEM)
MSC.Patran Nastran commercial code, with default direct and iterative solvers.
The efficiency measures include model size, error in geometry approximation and
the execution time. The error in geometry approximation is defined as relative
difference between the volume of the original and discretized model.

- Models of typical machine parts are analysed: a connecting rod and a crankshaft.
The FEM model number of degrees of freedom (DOF) ranges from the order of
10° to 10°. The size of corresponding FMBEM models is in the order of 10* to 10°
respectively. All models approximate the geometry with the error of 0.03% or lower.

- The FMBEM provides displacement and stress results within the tolerance of 1%
with respect to the converged FEM results obtained for the connecting rod model.
For the crankshaft with a high stress concentration, the FMBEM maximum stress
result is by about 10% higher than corresponding FEM value. The FMBEM execu-
tion time is close to the FEM with the direct solver.

- 3D linear elastic structures can be modeled by the present FMBEM with by an order
of magnitude less DOF, comparable accuracy and time close to the FEM with the
direct solver. The reduced number of DOF simplifies the preprocessing stage and
reduces the amount of postprocessed data. Thus, the FMBEM can be competetive
to the widely used FEM.

- The FMBEM execution time can be reduced, e.g. by the application of an optimized
M2L translation, GPU calculations [14], balanced multipole tree [4] and possibly
other improvements.
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