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Abstract. We develop a PUFEM–Partition of Unity Finite Element Method to im-
pose slip velocity boundary conditions on conforming internal interfaces for a fluid-
structure interaction model. The method facilitates a straightforward implementation
on the FEniCS/FEniCS-HPC platform. We show two results for 2D model problems
with the implementation on FEniCS: (1) optimal convergence rate is shown for a station-
ary Navier-Stokes flow problem, and (2) the slip velocity conditions give qualitatively the
correct result for the Euler flow.

1 Introduction

Slip velocity boundary conditions can be used to simulate the effect of turbulent bound-
ary layers in fluid-rigid body interaction models [2, 3] and have been applied successfully
in many applications in aerodynamics [4, 5, 6, 8]. To prescribe the slip boundary con-
ditions we need to enforce the continuity of the velocity normal at the fluid-rigid body
interface, while allowing a jump in the tangential velocities. In the case the rigid body
is represented as a boundary condition on the fluid domain, a slip boundary condition is
straightforward to implement, see e.g. [1].

1.1 Research objectives

Our aim is to extend this work to fluid-structure interaction (FSI). A unified continuum
fluid-structure interaction model [7] was developed to simulate flexible structures but with
no slip boundary conditions imposed implicitly through the model. Here we develop a
PUFEM [11] to impose slip boundary conditions over the internal fluid-structure interface.
The main idea is doubling the solution fields to manage the discontinuity. Although the
method is based on the cut finite element method [12, 13], the solutions are extended
to the whole domain with the mesh conforming interface to avoid local treatment of the
interface conditions and stabilization.
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1.2 A fluid-structure interaction model

The unified continuum fluid-structure interaction model [7, 10] on a composed spatial
domain Ω = Ωf ∪Ωs and time domain I, in the ALE coordinates with a mesh velocity β
reads:

ρ
(
u̇+

(
(u− β) · ∇

)
u
)

+∇ · σ = f in Ω× I

∇ · u = 0 in Ω× I

Φ̇ +
(

(u− β) · ∇
)

Φ = 0 in Ω× I

u(·, 0) = u0 in Ω

(1)

where

Ωf fluid domain, Ωs structure domain
u the velocity, p the pressure
ρ the density, σ the stress

The discontinuous phase function Φ defines the structure and fluid domains

Φ(x, t) =

{
1 if x ∈ Ωf

0 if x ∈ Ωs
(2)

For a Newtonian fluid and an incompressible Neo-Hookean solid, the stress σ is computed
as the following

σ = −σD + p I
σD = Φσf + (1− Φ)σs

σf = 2µfε(u)

σ̇s = 2µsε(u) +∇uσs + σs∇uT

(3)

where I is the identity matrix with the same size as σ.

On the fluid-structure interface Γfs = Ω
f ∩ Ω

s
either the no-slip

JuK = 0 (4)

or the slip velocity boundary condition

Ju · nK = 0 (5)

is imposed, where J·K denotes the jump over the interface. We also need to assure the
force balance condition at the interface, i.e

Jσ · nK = 0. (6)

Let Qh be a continuous piecewise linear function space defined on Ω and

Q0
h =

{
q ∈ Qh

∣∣q = 0 on ∂Ω
}
,

2



Van-Dang Nguyen, Johan Jansson, Thomas Frachon, N. Cem Degirmenci, Johan Hoffman

the time step size kn =
∣∣tn− tn−1

∣∣ and the element size hn, the least-squares finite element
method coupled with the Trapeziodal method for the FSI model is stated as [7, 10]. Find
ûh = (unh, p

n
h) with unh ∈ Vh ≡ [Q0

h]
3 and pnh ∈ Qh such that(

ρ
(

(unh−un−1
h )k−1

n +((umh −βh)·∇)umh

)
,vh

)
+Φ
(

2µfε(u
m
h ), ε(vh)

)
+(1−Φ)

(
Ss,∇vh

)
−
(
pnh,∇ · vh

)
+
(
∇ · umh , q

)
+Lδ(û

m
h , v̂h), ∀ v̂h = (vh, qh) ∈ Vh ×Qh (7)

where umh = 1
2

(
unh + un−1

h

)
. The least-squares stabilization term is

Lδ(ûh, v̂h) :=
(
δ1 ρ

(
(uh − βh) · ∇uh +∇ph − fh

)
, ρ(uh − βh) · ∇vh +∇qh

)
+
(
δ2∇ · uh , ∇ · vh

)
(8)

where δ1 = C1 ρ
−1
(
k−2
n + |un−1

h −βh|2h−2
n

)−1/2

, δ2 = C2 ρ |un−1
h |hn and Ss is the numerical

solution of the Neo-Hookean solid equation.
It is worth emphasizing that the no-slip velocity Eqs. (4, 6) are implicitly imposed

through the model.

1.3 A cut finite element method for the Stokes equations

This section recalls the cut finite element method developed in [12, 13] for interface
problems which allows for discontinuities across the interface which can be located ar-
bitrarily in a fixed background mesh. The method has been shown to have an optimal
convergence.

The Stokes equations are considered in a composed domain Ω = Ω0 ∪ Ω1:

−∇ ·
(
µ∇u− p I

)
= f in Ω0 ∪ Ω1

∇ · u = 0 in Ω0 ∪ Ω1

(9)

with interface conditions imposed on Γ = Ω0 ∩ Ω1

JuK = b, J(µ∇u− p I)nK = g (10)

and the Dirichlet boundary condition on ∂Ω

u = 0 (11)

Assume that the exact solutions are domain-wise continuous on each domain Ωi and
discontinuous across Γ, we can represent them as u = (u0,u1) and p = (p0, p1) where
ui, pi are defined on Ωi. The function spaces are defined as follows

Qi =
{
p ∈ H1(Ωi)

}
, Q0

i =
{
p ∈ Qi : q = 0 on ∂Ωi

}
3
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The weak formulation of Eq. (9) with a test function v̂ = (v0,v1, q0, q1) and (vi, qi) ∈
[Q0

i ]
2 ×Qi is(
µ∇u,∇v

)
Ω0∪Ω1

+
(
∇p,v

)
Ω0∪Ω1

−
r

(p,v · n)
z

Γ
−
(
u,∇q

)
Ω0∪Ω1

+
r

(q,u · n)
z

Γ

−
(

(µ∇u− p I)n,v
)
∂Ω
−

r(
(µ∇u− p I)n,v

)z
Γ
=
(
f ,v

)
Ω0∪Ω1

(12)

where (a, b)Ωo∪Ω1 = (a0, b0)Ω0 + (a1, b1)Ω1 for all functions a = (a0, a1), b = (b0, b1).

Let JaK = a0 − a1, {a} = a0+a1
2

and based on the fact that Ja bK = {a} JbK + JaK
〈
b
〉
,

we have r(
(µ∇u− p I)n,v

)z
Γ

= {(µ∇u− p I)n} JvK + g
〈
v
〉

r
(q,u · n)

z

Γ
= {q}Ju · nK + JqK

〈
u · n

〉
r

(p,v · n)
z

Γ
= {p}Jv · nK + JpK

〈
v · n

〉 (13)

So,
alap(u,v) + bh(u, q)− bh(v, p) + {q}Ju · nKΓ =

(
f ,v

)
Ω0∪Ω1

+g
〈
v
〉

(14)

where
b(u, q) = −

(
u,∇q

)
Ω0∪Ω1

+
(
JpK,

〈
v · n

〉)
Γ

(15)

and
alap(u,v) =

(
µ∇u,∇v

)
Ω0∪Ω1

−
(
{(µ∇u)n} , JvK

)
Γ

(16)

We obtain the bilinear form

a
(
û, v̂

)
= alap(u,v) + b(u, q)− b(v, p) +

(
{q}, Ju · nK

)
Γ

(17)

and linear form
L
(
v̂
)
=
(
f ,v

)
Ω0∪Ω1

+
(
g,
〈
v
〉)

Γ
(18)

The jump condition JuK = b is imposed weakly using a penalty parameter η ∼ O(1/h).

ajump(u,v) = η(JuK, JvK)Γ

Ljump(v) = η(b, JvK)Γ

(19)

A Nitsche’s stabilization term is added to control the condition number of derived matrices

4



Van-Dang Nguyen, Johan Jansson, Thomas Frachon, N. Cem Degirmenci, Johan Hoffman

[13].

anstab(ûh, v̂h) = εu h
3

(
µ0

〈
Jn · ∇u00

h K, Jn · ∇v00
h K
)

Γ
+µ0

(
Jn · ∇u01

h K, Jn · ∇v01
h K
)

Γ

+µ1

(
Jn · ∇u10

h K, Jn · ∇v10
h K
)

Γ
+µ1

(
Jn · ∇u11

h K, Jn · ∇v11
h K
)

Γ

)

+εp h
3

(
µ−1

0

(
Jn · ∇p0

hK, Jn · ∇q0
hK
)

Γ
+µ−1

1

(
Jn · ∇p1

hK, Jn · ∇q1
hK
)

Γ

)
.

(20)
Here we assume ∇uijh is the entry ij of the matrix ∇u and ∇pih is the component i of the
vector ∇p.

An alternative stabilization term based all volume integrals was proposed in [12]

anstab(û
h, v̂h) = β

((
u0,v0

)
Ω1

+
(
p0, q0

)
Ω1

+
(
u1,v1

)
Ω0

+
(
p1, q1

)
Ω0

)
(21)

where β is a small positive parameter.
The Nitsche finite element method is stated as: find ûh = (uh0,uh1, ph0, ph1) with (uhi, phi) ∈
[Q0

hi]
2 ×Qhi such that

â
(
ûh, v̂h

)
= L̂

(
v̂h
)
, ∀v̂h = (vh0,vh1, qh0, qh1) with (vhi, qhi) ∈ [Q0

hi]
2 ×Qhi (22)

where
â
(
ûh, v̂h

)
= a

(
ûh, v̂h

)
+ajump(uh,vh) + anstab(ûh, v̂h)

L̂
(
v̂h
)

= L
(
v̂h
)
+Ljump(vh)

(23)

1.4 Software

FEniCS [18] is a collection of open-source packages to enable automated solution of
differential equations. It provides automated evaluation of variational forms given a high-
level description in mathematical notation. The FEniCS-HPC platform [15, 17] is a
high performance computing branch of FEniCS. This branch is optimized for massively
parallel architectures, and shows strong linear scaling up to thousands of cores [14]. The
Unicorn solver [7, 9] has been built on top of FEniCS-HPC with duality-based adaptive
error control, implicit parameter-free turbulence modeling by the use of the least-squares
stabilized finite element method to efficiently simulate turbulent flows. The solver has
also been used to simulate flexible structures in a fluid-structure interaction framework
but with no slip boundary conditions imposed implicitly through the model.

2 Method

Based on the method reviewed in Section 1.3, we develop a PUFEM which allows for
imposing weak slip velocity conditions Eq. (5, 6). Together with the Trapeziodal time-
stepping method and the least-squares stabilization, it is stated as: Find (unh0,u

n
h1, p

n
h0, p

n
h1)

5
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with unhi ∈ Vh ≡ [Q0
h]

2 and pnhi ∈ Qh, i = 0, 1 such that(
ρ
(

(unh − un−1
h )k−1

n + (umh − βh) · ∇umh
)
,vh

)
Ω0∪Ω1

+Φ
(

2µfε(u
m
h ), ε(vh)

)
Ω0∪Ω1

+ (1− Φ)
(
Ss,∇vh

)
Ω0∪Ω1

−
(
pnh,∇ · vh

)
Ω0∪Ω1

+
(
∇ · umh , qh

)
Ω0∪Ω1

+ η
(
Jumh · nK, Jvh · nK

)
Γ
+L̂δ(û

n
h, v̂h) + anstab(û

n
h, v̂h) =

(
fh,vh

)
Ω0∪Ω1

, (24)

for all test function (v0,v1, q0, q1) with (vi, qi) ∈ Vh ×Qh.
Here (

ah, bh

)
Ω0∪Ω1

= (1− Φ)

∫
Ω0

ah0 bh0 dx+ Φ

∫
Ω1

ah1 bh1 dx,

L̂δ(ûh, v̂h) = (1− Φ)Lδ(ûh0, v̂h0) + ΦLδ(ûh1, v̂h1),

where Lδ(·, ·) is calculated by Eq. (8), and η is the penalty parameter η ∼ O(1/h).

The approximation of (u, p) is (ūnh, p̄
n
h) where

ūnh = (1− Φ)uh0 + Φuh1

p̄nh = (1− Φ) ph0 + Φ ph1

3 Results

Here we show some preliminary results generated by the code implemented in FEniCS.

3.1 Convergence rate

We consider the stationary incompressible Navier-Stokes equations:

u · ∇u− ν∆u+∇p = f

∇ · u = 0
(25)

on a composed domain Ω = Ω0 ∪ Ω1, where Ω0 is a unit disk,

Ω0 =
{

(x, y) ∈ Ω : x2 + y2 ≤ 1
}
,

and Ω1 is a square with a hole,

Ω1 = [−3, 3]2 \ Ω0.

To verify the convergence rate of the method, we extend the potential flow solutions past
a cylinder [16] to the full domain (see also in Figs. 1a, 1b)

p(x, y) =

{
0 if (x, y) ∈ Ω0

(x2 + y2)−2
(
x2 − y2 − 1

2

)
if (x, y) ∈ Ω1

,

u(x, y) =

{
(0, 0) if (x, y) ∈ Ω0

(x2 + y2)−2
(

(x2 + y2)2 − x2 + y2,−2x y
)

if (x, y) ∈ Ω1

(26)

6
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to which the source is f(x, y) = (0, 0). To have a valid approximation with ν > 0, the
following jump conditions are imposed at the internal interface Γ = Ω0 ∩ Ω1

Jν∇unK =

[
−2 ν (x2 − y2)
−4 ν x y

]
, Ju · nK = 0 (27)

which are slightly different from the slip velocity conditions.

For a small ν the viscous terms in the equation are small, and therefore we expect the
solution to be close to the solution to the inviscid Euler equations in the form of potential
flow, which we also observe in our simulations.

The PUFEM with the least-squares stabilization is stated as: Find ûh = (uh0,uh1, ph0, ph1)
with uhi ∈ Vh ≡ [Q0

h]
2 and phi ∈ Qh, i = 0, 1 such that(

∇ph+uh ·∇uh,vh
)

Ω0∪Ω1

+
(
ν∇uh,∇vh

)
Ω0∪Ω1

+
(
∇·uh, qh

)
Ω0∪Ω1

+η
(
Juh ·nK, Jvh ·nK

)
Γ

+ η
(
uh0,vh0

)
Γ
+L̂δ(ûh, v̂h) + anstab(ûh, v̂h) =

(
fh,vh

)
Ω0∪Ω1

∀v̂h = (vh0,vh1, qh0, qh1) with vhi ∈ Vh, qhi ∈ Qh (28)

where
L̂δ(ûh, v̂h) = (1− Φ)Lδ(ûh0, v̂h0) + ΦLδ(ûh1, v̂h1),

here Lδ(·, ·) is calculated by Eq. (8) with δ1 = δ2 = C h and anstab(ûh, v̂h) is calculated
by Eq. (21). An extra boundary condition uh0 = 0 is imposed on Γ to fix the disk.

Figure 1c shows an optimal convergence rate with ν = 10−2, β = 10−5h for Eq. (21) and
C = 1.

(a) (b) (c)

Figure 1: Reference pressure (a), reference velocity (b) and the convergence rate (c).
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3.2 2D Euler flow

The PUFEM method for the FSI model (Eq. 24) has been implemented in FEniCS
to simulate a 2D Euler flow past a rigid structure. The rigid body has the stiffness of
µs = 10N/m and is fixed at its center. Since there is no mesh movement in this example,
the mesh velocity β is set to 0. Fig. 2 shows the velocity approximation with slip
BCs imposed at the internal interface. The result gives a qualitative indication that the
PUFEM correctly implements the slip boundary conditions for the Euler flow.

Figure 2: Euler flow approximated by a stabilized finite element method with slip bound-
ary conditions.

4 Discussion

We proposed a PUFEM which allows for imposing the slip velocity boundary con-
ditions. Preliminary 2D results show an optimal convergence rate for the solutions of
Navier-Stokes equations and a qualitative accurate result for the Euler flow with slip ve-
locity boundary conditions. The next step is to validate the proposed method against
some benchmark problems such as the ones proposed in [19].
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