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1 Introduction

The SUPG method is frequently used to solve the governing equation. It is necessary
to carry out calculations based on several procedures that have been presented to obtain
stabilization parameters[1]. However, even if a numerical simulation is carried out based
on the stabilized FEM, the numerical solution is rarely in close agreement with real-world
observed values. It has been confirmed that if the Kalman filter FEM is employed to
compute the flow behavior while taking observed values into account, the computed value
is in better agreement with the observed value than the computational results obtained
using the conventional FEM[2]. However, the Kalman filter FEM can’t be applyed to
problem using the non-liniar system equation. Therefore, the ensemble Kaiman filter
FEM is introduced in this study[3]. In the ensemble Kalman filter FEM, the stochastic
distribution of the state variables is expressed by the ensemble approximation, and the
special distribution of the state variables is obtained by the FEM. The shallow water
equation is introduced as the governing equation, and the SUPG method is applied to
discretize the governing equation. Some results of numerical example is shown in this
study by using open channel model.

2 Computational flow of the ensemble Kalman filter FEM

In this study, the shallow water equation is applied to simulate the flow field. The
momentum and the continuity equations are expressed as Eqgs. (1) and (2), respectively.

w; + Ul + gn; — y(ui,j + Uj,i)’j =0 (1)

N+ ((h+n)u); =0 (2)

where u;, g, h, n and v denote the velocity component for x and y directions, the water
elevation, the gravitational acceleration, the standard water depth and the kinematic
viscosity coefficient, respectively. The kinematic viscosity coefficient v is expressed by

Eq. (3). -
v= Elu*h (3)



In Eq. (3), the Kalman constant &; is set as 0.41, and the friction velocity w, is calculated

by Eq. (4).
gn? v UkUk (4)
hl/3
Here, n, indicates Manning’s roughness coefficient. The SUPG and the backward Fuler
methods are employed to discretize the governing equation in space and time, respectively.
The system equation in the ensemble Kalman filter FEM is obtained by adding the system
noise term to the discretized governing equation.

Uy =

The system and the observation equations shown in Eqs. (5) and (6) is introduced in
the ensemble Kalman filter FEM:

[A1 (9"} = [As(9)){o" 7} + [T{g""} i=1,2,---, M (5)
{Zn—l—l(i)} — [H]{¢n+1(z’)} + {Tn—l-l(z')} i= 1, 2, e M (6)

where [A(9)], [A2(0)], {0}, [T], {q}, {2}, [H] and {r} respectively indicate the coefficient
matrices of the finite element equation, the state variable vector, the driving matrix,
the system noise vector, the observation value vector, the observation matrix and the
observation noise. Here, n and (i) indicate the number of time steps and sample number,
with M being the total sample number. The number of the initial conditions is M. The
initial conditions are prepared by the Gaussian distribution. The computational flow of
the ensemble Kalman filter is shown as follows. In the following computational flow,
{6"D} and {z"D} represent {¢"®} — {¢"} and {z"(D} — {z"}, respectively. {¢"} and
{z™} represent the individual average values of all ensemble components.

1. Item input of the ensemble matrix for the state value at the initial step,
= 70(1 “n(2 Z0(M
[(P(()—)] = [{¢)((_))}a {¢(£))} T {d’((_) )}]7 and n=0.

2. Calculation of the ensemble matrix for the observation value,
2] = LY A2,

3. Calculation of covariance matrices,
UEL)) = s 121207 and [V2)] = 551901120

M-1

4. Calculation of the Kalman gain matrix,

(K] = ULV
5. Calculation of the optimal estimation value,

{00} = ("} + KM =) i=1.200 M.
6. Calculation of the averaged optimal estimation value,

{GE&)} = ﬁ Zi]\il{¢?f))}'

7. Calculation of the system equation,
n+1(2 n(i n(i
AN} = [Aa(){1)} + [TH{a" O}
8. Calculation of the ensemble matrix for the state value,

(@5 = {or) Y AS ™y o M.

9. Update of time step n = n + 1 and [&)?j)l] = [® )] and return to step 2.



3 Numerical example

Some results of the numerical experiment using the ensemble Kalman filter using the
SUPG FEM are shown in this section. The numerical model is shown in Fig. 1. The
observation points are set at points A, B and C, and the estimation points are set at
points D, E and F. The coordinates for each point are listed in Table 1. The definition of
boundary conditions is also shown in Fig.2. The numerical conditions are listed in Table
2. As an example of observed water elevation, the time history of water elevation at point
C is shown in Fig.3.

Fig.4 shows the time history of estimated water elevation in case of some sample numbers
at point F. The sample numbers is set as 100, 125, 250, 1000. The red line indicate
the true value of the water elevation, and the other lines indicate the estimated water
elevation in case of each sample number. It is seen that appropriate estimated water
elevation is obtained in case of the sample number is equal to 1000.
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Figure 1: Computational model.
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Figure 2: Boundary condition on the left hand side boundary.

4 Conclusions

Shallow water flow estimation analysis based on the Kalman filter FEM was shown in
this paper. The shallow water equation was employed as the governing equation, and
the SUPG and the backward Euler methods were applied to discretize the governing
equation in space and time, respectively. The open channel model was employed as
the computational model, and the estimation accuracy was investigated by changing the



Table 1: Position of observation points and estimation points.

A (Observation point)
B (Observation point)
C (Observation point)
D (Estimation point)
E (Estimation point)
F (Estimation point)

(x,y) = (0.0,0.5)

(z,y) = (1.0,0.5)
(z,y) = (2.0,0.5)
(xz,y) = (3.0,0.5)
(xz,y) = (4.0,0.5)
(z,y) = (5.0,0.5)

Table 2: Computational conditions.

Time increment, s
Number of time step
Standard water depth, m

Manning’s roughness coefficient n,, m

Gravitational acceleration, m/s?
Initial condition (Average)
Initial condition (Variance)

System noise (Average)
System noise (Variance)
Observation noise (Average)
Observation noise (Variance)
Sample number M

~1/34

0.001
1000
10.0
0.05
9.81
0.0
0.001
0.0
0.001
0.0
0.1
100, 125, 250, 1000
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Figure 3: Time history of observed water elevation at point C.
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Figure 4: Time history of estimated water elevation in case of some sample numbers at point F.

sample number. In this study, we confirmed that the flow behaviour is appropriately
obtained using the present method in case that enough sample number is given as the
computational condition. In future studies, it will be necessary to apply the present
method to the flow estimation problems using the practical observed data.
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