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Abstract. The present study aims to describe the debonding phenomenon of a single
particle embedded in an elastic matrix. A numerical simulation based on a Cohesive
Zone Model (CZM) is employed to simulate the particle debonding from the matrix. This
model relies on two mechanical parameters: the strength of the interface σmax and the
interface fracture energy Gc. The results show that bigger particles tend to debond before
smaller ones. This particle size effect on debonding is captured by the CZM. Moreover,
for big particles, the debonding seems to be governed by the strength of the interface,
whereas, for small ones, the predominant quantity is the fracture energy.

1 INTRODUCTION

The addition of stiff particles in a matrix is a common practice to obtain a reinforced
material stiffer and more resistant than the bulk matrix itself. Such a resulting composite
material is used in multiple industries such as automotive, aeronautics, aerospace, etc.
Various mechanical properties can be obtained using different materials, sizes, shapes,
geometries, or surface treatments for the reinforcements. The role of the particles is then
preponderant in such a material behaviour. That is the reason why it is important to
be able to correctly estimate their influence either in the elastic domain or when damage
occurs.

Three main damage mechanisms are commonly observed in particle reinforced mate-
rials: particle failure, microcracks nucleating in the matrix and particle debonding from
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the matrix [1]. For a polymer reinforced with rigid particles, debonding is the first dam-
age mechanism to be activated and is considered to be the main toughening mechanism
[2]. A clear particle size effect has been observed experimentally [3]. Indeed, the global
toughness of the material increases with particle size [4].

To deal with this particle size effect, an energy balance has often been evoked in the
literature. In the context of Linear Elastic Fracture Mechanics (LEFM), several authors
develop an expression of the stress responsible for particle debonding [2], [5], [6], [7], [8].
All those studies are based on the same assumptions: a rigid spherical particle of a radius
R is embedded in an infinite matrix, which elastic properties are Em (Young’s modulus)
and νm (Poisson’s ratio). The interface is supposed to be infinitely stiff and its fracture
energy is denoted Gc. When a hydrostatic loading is remotely applied to the matrix, the
critical interface stress is then:

σc =

√
Gc

R

4Em

1 + νm
. (1)

According to this energy-based relationship, the critical stress to debond a particle is
proportional to 1/

√
R.

Figure 1: Spherical particle embedded in a cylindrical matrix; geometric reduction of the problem using
axial symmetries.

The case study for the spherical particle debonding consists in one single particle
embedded in a cylinder of matrix. The geometry of the Representative Volume Element
(RVE) is the one presented in Fig. 1. The radius of the sphere is equal to one tenth of
the length of the diameter of the cylinder: R = L/10. This situation corresponds to a
dilute particle volume fraction φ = 0.0042. The geometry is reduced to a 2D structure by
axisymmetry, and then only half of the geometry is modelled by using a mirror symmetry
along the horizontal axis.The material properties associated to the particle are those of
the boron-carbide while the matrix is an epoxy resin. The mechanical properties of the
particle, the matrix and the interface are detailed in Table 1. Moreover the following
hypothesis always apply to the present study:

1. the material behaviour of both particles and matrix is linear elastic;

2. the interface is supposed to be infinitely stiff.
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E [GPa] ν [ ] σmax [MPa] Gc [J.m−2]
Particle 450 0.2 × ×
Matrix 3 0.3 × ×

Interface ∞ × 50 100

Table 1: Mechanical properties of the materials and the interface

In the Finite Elements (FE) framework, the problem of a crack propagating at an
interface between two surfaces is commonly treated with Cohesive Zone Models (CZM),
where cohesive interactions at the interface are able to describe the progressive nonlinear
failure behaviour. In Section 2, the CZM applied to spherical particle debonding will be
described. Then, in Sections 3 and 4, the debonding of this particle will be respectively
studied under hydrostatic and uniaxial tensile loadings. Finally, a discussion on these
results will be held.

2 THE COHESIVE ZONE MODEL (CZM) APPLIED TO SPHERICAL
PARTICLE DEBONDING

In order to numerically solve the debonding problem, a FE analysis is carried out.
Zero-thickness elements are introduced at the interface and their behaviour is described
by a CZM. The CZM is a traction-separation law linking the stress and the relative
displacement at the interface between two surfaces. Multiple traction-separation law
shapes have been developed such as bilinear, trilinear, exponential, etc. In the present
study, only the bilinear law will be employed (see Fig. 2) which corresponds to the CZM
of [9] in the software Ansys. The bilinear law is defined by two main parameters: the
strength of the interface σmax and the fracture energy Gc. σmax corresponds to the peak of
the traction-separation law, whereas Gc corresponds to the shaded area under the curve.
As we consider the interface to be perfect until failure, the slope of the first part of the
traction-separation law is taken high enough so that the global stiffness of the RVE is
not affected by this additional compliance. The introduction of the two parameters σmax

and Gc in the traction-separation law induces the apparition of a critical displacement uc
which, according to Leguillon [10], is not a material parameter but a structural one. We
can deduce the critical displacement uc as a function of σmax and Gc as follows:

uc =
2Gc

σmax

(2)

During the first part of the loading, the interface deforms elastically. After the strength
value σmax is reached, the interface starts to get damaged. Indeed, its stiffness is pro-
gressively degraded until the relative displacement of the two surfaces reaches the value
uc where the stiffness of the interface completely vanishes. The two surfaces are then
considered to be completely debonded.

According to the case study described on Fig. 1, the RVE consists in a quarter of
a disk embedded in a square of matrix (see Fig. 3). A specific care has been given the
generation of the mesh. In particular, the mesh has been refined at the interface to ensure
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Figure 2: Bilinear traction-separation law

both a good convergence and a good precision for the results around the zone of interest.
On the other hand, the rest of the RVEis discretised with larger element sizes to reduce
computational costs. The arc representing the matrix/particle interface is discretised into
180 elements, therefore each cohesive element correspond to an opening angle of 0.5◦. The
following boundary conditions are applied to ensure mirror symmetries of the RVE:{

Ux(x = 0) = 0,
Uy(y = 0) = 0.

(3)

Figure 3: Geometry, mesh and loading conditions of the RVE.

For each loading condition studied in this article, the geometry and the mesh of the
RVE are replicated in a homothetic manner and the CZM is used to determine the remote
stress responsible for the onset of the particle debonding from the matrix. The remote
stress and the strain are calculated as: σ =

( ∑
nodes

Fi

)
/ (πL2) ,

ε = U/L,
(4)
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where ni is the i-th node submitted to the imposed displacement U and Fi is the corre-
sponding reaction force.

3 DEBONDING OF A SINGLE SPHERICAL PARTICLE UNDER HY-
DROSTATIC LOADING

The debonding of the spherical particle under hydrostatic loading is here analysed. A
displacement U is imposed at the boundaries of the RVE in order to get a hydrostatic
stress state (see Fig. 3, the imposed displacement corresponds to the green and orange
arrows): {

Ux(x = L) = U,
Uy(y = L) = U.

(5)
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Figure 4: a. Critical remote stress against particle radius for hydrostatic loading
(the dots correspond to the CZM results and the dashed lines to asymptotes);
b. Same plot in log-log scale.

The critical stress responsible for the debonding onset is determined for multiple parti-
cle sizes (with radii varying between 10µm and 2mm) using both the CZM approach and
the analytical one represented in Eq. 1. The results are represented on Fig. 4 a. We can
observe that for small particles (R ≤ 400µm), the critical stress increases with decreasing
particle size. For larger particles (R ≥ 400µm), a plateau value is reached and the critical
stress remains constant. A characteristic length lch has been defined by several authors to
establish the ductile to brittle transition in fracture mechanics. A definition of lch, taking
into account the stiffness heterogeneity of the composite and based on [11], is chosen in
this article:

lch =
GcEeff

σmax
2
, (6)

with Eeff the effective Young’s modulus of the bi-material, calculated as the harmonic
mean of the particle and matrix Young’s moduli Ep and Em:

Eeff =
((
E−1p + E−1m

)
/2
)−1

. (7)

5



Timothée Gentieu, Anita Catapano, Julien Jumel, and James Broughton

This characteristic length is represented on Fig. 4 a., and one can observe that it represents
fairly well the transition between the radius-dependent to radius-independent regimes.

To assess more precisely the radius dependency of the critical remote stress, the same
graph is plotted in a log-log scale on Fig. 4 b. In bothe Fig. 4 a. and b. the asymptotes
are plotted with dashed lines. It can be observed that for small particles, the slope of the
CZM asymptote is equal to −1, whereas the slope of the analytical expression is −1/2.
σ∞c is then proportional to 1/R with the CZM and 1/

√
R for the analytical expression.

For large particles, characterised by R > lch, σ∞c is independent of the particle radius. It
is noteworthy that the stress concentration at the interface is also independent of particle
radius [12], whereas the energy release rate isn’t [13]. This observation suggests that
for large particles, the strength of the interface becomes the predominant factor for the
interface failure.

4 DEBONDING OF A SINGLE SPHERICAL PARTICLE UNDER UNI-
AXIAL LOADING

In this section, the debonding of the spherical particle under uniaxial loading is studied.
A displacement U is imposed at the upper boundary (y = L) of the RVE only in order
to get a uniaxial stress state (the imposed displacement corresponds to the orange arrows
represented on Fig. 3). The right boundary (x = L) is left free so that the loading
conditions can be summed up as:

Uy(y = L) = U. (8)
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Figure 5: a. Critical remote stress against particle radius with CZM under uniaxial loading;
b. Same plot in log-log scale.

The remote stress responsible for the debonding onset is depicted on Fig. 5 a. The
same behaviour as the one observed for the hydrostatic loading is described here: below
a given particle size, the smaller the particle gets the higher the critical stress, while
for larger particles, σ∞c remains constant. The same graph is plotted on Fig. 5 b. in
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a log-log scale. On both Fig. 5 a. and 5 b. asymptotes are drawn with dashed lines.
The intersection of the asymptotes for the two regimes is exactly located at lch calculated
using Eq. 6. However, contrary to the hydrostatic loading, an intermediate behaviour is
observed between the radius-dependent and radius-independent regions of the graph. In
this regime, the CZM induces an important effect of the extension of the damaged region
in the crack nucleation process. This length depends on the traction-separation law shape
and consequently on both interface strength and fracture energy.

5 DISCUSSION

To assess the influence of the different physical quantities involved in fracture (fracture
energy Gc, strength of the interface σmax, critical displacement uc, characteristic length
lch), a parametric study is conducted. Four CZM are employed and their properties are
expressed in Table 2.

Gc [J.m−2] σmax [MPa] uc [mm] lch [mm]
CZM 1 100 50 0.004 238.4
CZM 2 50 50 0.002 119.2
CZM 3 200 100 0.004 119.2
CZM 4 100 100 0.002 59.6

Table 2: CZM properties

The CZM 1 and 2 share the same strengths σmax. The CZM 1 and 3 share the same
critical displacements uc. The CZM 1 and 4 share the same critical energies Gc. The
results for the critical remote stress against the particle radius are plotted on Fig. 6 a. for
the 4 different CZM. Fig. 6 b. represents the same plot in a log-log scale.
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Figure 6: a. Critical remote stress against particle radius for different CZM;
b. Same plot in log-log scale.
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As previously observed, two asymptotic regimes are observed for small and large par-
ticles. The characteristic length lch seems to be a very good descriptor of the transition
between the two regimes as it corresponds to the intersection of the asymptotes for all the
CZM. For small particles, the critical remote stresses obtained using the CZM 1 and 3
are the same. This result seems to imply that the predominant CZM parameter for small
particle debonding is the critical length uc. For large particles, the plateau values of σ∞c

when using CZM 1 and 2 are the same. This last result confirms that the strength σmax

of the CZM governs the debonding for large particle sizes. A final remark concerns the
results related to the CZM 1 and 4 which share the same fracture energy: the respective
remote stresses don’t have any asymptote in common. The authors do not identified the
main reason of this phenomenon and a research work is still in progress.

6 CONCLUSIONS

In this work the debonding phenomenon of a spherical particle embedded in a matrix
has been analysed. In particular the particle size effect on the critical remote stress has
been evaluated. Two different loading cases have been considered: hydrostatic and the
uniaxial tensile loading. The same conclusions can be drawn concerning the particle size
effect on the debonding phenomenon:

- larger particles tend to debond at lower remote stress states than smaller particles;

- for large particles, the critical remote stress is constant. The predominant debonding
parameter is the strength of the interface, as the stress state at the interface is
independent of the particle radius;

- for small particles, the critical remote stress increases when decreasing the particle
size. When using the CZM, this critical remote stress is proportional to 1/R, whereas
when using the analytical expression based on an energy balance, the critical remote
stress is proportional to 1/

√
R. A similar result was observed for fibre-reinforced

composites in [11]. The debonding of small particles simulated by a CZM seems to
be governed by the critical displacement.

The characteristic length lch seems to be a fairly accurate value of the transition from
the radius-dependent regime to the radius-independent one. For the uniaxial loading, the
value of lch is exactly at the intersection between the two asymptotes. For the hydrostatic
loading, lch only gives a good order of magnitude of the radius at the transition zone. For
the hydrostatic loading, the numerical results are exactly equal to the asymptotic ones.
For the uniaxial loading, the asymptotic behaviours are observed only when R� lch and
R � lch respectively. For this last case, an intermediate behaviour is described around
lch by the CZM. In order to establish this particle size effect, a comparison between these
results obtained with a CZM are compared to the ones obtained with the Finite Fracture
Mechanics (FFM) in an article in process [14]. In the framework of FFM, a crack of a finite
length opens and propagates when both an energy and a stress criteria are simultaneously
fulfilled. The FFM is able to analytically catch the evolution of the debonding stress with
particle radius.
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