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Abstract. Turbulent flow fields contain a wide range of spatio-temporal scales. Direct Nu-
merical Simulation techniques provide an accurate description of turbulent flow fields. This
accuracy comes at the expense of high computational cost and memory footprint. In this con-
text, feature detection algorithms are useful tools that help to identify relevant flow structures,
their interactions and ulterior evolution. In this contribution, we employ feature detection algo-
rithms to analyze canonical and controlled turbulent channel flows. Specifically, we will apply
both Proper Orthogonal Decomposition and Dynamic Mode Decomposition to DNS-generated
turbulent channel flow data-bases. The ultimate goal is to reveal whether flow features linked
to drag reduction exist and, if that is the case, learn how those structures could be enhanced,
thus leading to more efficient drag reduction strategies.

1 INTRODUCTION

Turbulent flow fields contain a wide range of spatio-temporal scales, see 11. Direct Numerical
Simulation (DNS) techniques provide a complete description of turbulent flow fields, at least for
flows at low to moderate Reynolds number.

Such DNS descriptions are indeed accurate, but this accuracy comes at the expense of high com-
putational cost and memory footprint. In this context, feature detection algorithms are useful
tools that help to identify relevant flow structures, their interactions and ulterior evolution.

In this contribution, we employ feature detection algorithms to analyze canonical and controlled
turbulent channel flows. Specifically, we will apply both Proper Orthogonal Decomposition
(POD, 2) and Dynamic Mode Decomposition (DMD, 16) to turbulent data-bases generated by the
DNS solver described in 9.

The actuation considered is the imposition of a spanwise wall velocity that varies sinusoidally
with the streamwise coordinate, wwall ∝ sin(2πx/λx), which is known to lead to drag reduction 17.

Snapshot-based variants of the POD/DMD algorithms have been considered, see section 2 for a
complete description of the algorithm.



In order to obtain a richer information, both POD and DMDanalyses considering snapshots formed
by different flow quantities have been considered: departing from the velocity field (see the
pioneering work of 3), we will consider additionally snapshots formed by alternative magni-
tudes, e.g. Reynolds stresses. Moreover, and encouraged by the promising results in the study
of laminar-to-turbulent transition in 15, we intend to apply the composite DMDmethod of Sayadi
and Schmid 14. This technique considers snapshots assembled by related quantities -e.g flow
velocity and skin friction- to uncover relations between both magnitudes.

The ultimate goal is to reveal whether flow features linked to drag reduction exist and, if that
is the case, learn how those structures could be enhanced, thus leading to more efficient drag
reduction strategies.

2 METHOD

2.1 Feature detection algorithms: POD and DMD

Dynamic Mode Decomposition (DMD) techniques 16, 4, 10 have increased in popularity over the
past years and have been applied to a variety of flows, using data from numerical simulations
and experiments (e.g. 1, 10, 12, 5).
First, a brief summary of the snapshot-based DMD technique, as proposed in 16, is presented.
Given a sequence of instantaneous flow fields numbered from 1 to N (e.g. taking one or all
recorded variables), the following data matrix can be constructed:

V1
N = {v(t1),v(t2), ..,v(tN )}, (1)

where the subindex and superindex identify, respectively, the first and last time instants of the
sequence. The data is ordered in time, and separated by a constant sampling time interval ∆ts

such that: tj+1 = tj + ∆ts for all j = 1, .., N − 1. In the case of linear stability analysis and
within the exponential growth region, it is possible to define a linear operator A (i.e. a numerical
approximation of the linearised Navier–Stokes operator) such that v(tj+1) = Av(tj). Eq. (1)
can then be rewritten as a Krylov sequence (13):

VN
1 = {v(t1),Av(t1), ..,A

N−1v(t1)}. (2)

For an ordered sequence, Eq. (2) can be equated to Eq. (1):

A{v(t1),v(t2), ..,v(tN−1)} = {v(t2),v(t3), ..,v(tN )}, (3)

which can alternatively be written in matrix form as:

AV1
N−1 = V2

N . (4)

Next, the Singular Value Decomposition (SVD) of the matrix V1
N−1 = UΣWH is obtained,

where the superscriptH denotes conjugate transposition. The left singular vectors – the columns
of U – correspond to the PODmodes of the input data sequence. Thus, the snapshot-based DMD al-
gorithm requires the calculation of the POD modes.

The SVD of the snapshot matrix is then inserted into Eq. (4), which yields AUΣWH = V2
N .

The reduced matrix S̃ = UHAU associated with the initial system described by A, can be
rewritten using the former equality as:

S̃ = UHAU = UHV2
NWΣ−1. (5)



The reduced matrix S̃ is the projection of the matrix A onto the POD space contained in U,
and previously obtained through the SVD operation 16.

Once the reduced matrix S̃ has been calculated, the reduced DMD modes yi can be obtained,
as well as the associated eigenvalues µi (i.e. growth rates ℜ(µi) and frequencies ℑ(µi) mapped
to the unit circle) of the reduced system by solving the eigenvalue problem S̃yi = µyi. The ap-
proximated eigenmodes of the matrix A can then be recovered via a projection onto the original
space, using relation φi = Uyi. Eventually, the growth rates and frequencies in the complex
half-plane can be recovered from the eigenvalues as: λi = log(µi)/∆ts.

Finally, note that the DMD decomposition allows to expand the data sequence as:

v(t) =

N∑

i=1

αiφie
i λi t. (6)

In this contribution, the amplitudes αi are computed following the formulation in 8. Note that,
since only composite DMD analyses (based on Cf and either u′v′ or λ2) are considered in this
work, we plot the amplitudes weighted by its contribution to the Cf temporal sequence 6.

2.2 Databases description

Feature detection algorithms describe in previous section have been applied to two turbulent
channel flows databases generated by the DNS solver described in 9. The solver provides snap-

shots of the flow field including the complete velocity field and the λ2 invariant 11.

In both cases, the channel walls are planar and the simulations have been conducted under the
assumption of constant mass flux. The difference in the databases is the boundary condition
enforced at the channel walls: in the reference case, the classical no-slip boundary condition has
been enforced, whereas in the actuated configuration, a streamwise variation of the spanwise
velocity component wwall is assumed, namely wwall = W0 sin(2πx/λx). Table 1 summarizes the
characteristics of both databases. Note how the actuation strategy is effective in proving drag
reduction, as Reτ ≈ 200 for the standard channel whereas Reτ ≈ 145 is effectively observed for
the actuated channel flow.

Table 1: Turbulent channel flow databases. Summary.

Lx/h Ly/h Lz/h nx ny nz uc uτ Reτ W0 λx/Lx N Memory [GB]
Reference 0.7733 0.04198 199.809 − −

2π 2 π 192 129 192 1025 190
Actuated 0.7824 0.03077 146.488 0.5 1/2



3 RESULTS

Figures 2 and 3 summarize the results obtained for the reference channel flow when conducting
a POD/DMD analysis on a sequence of composite u′v′-Cf snapshots. Fig. 2a shows the singular
values retrieved from the POD analysis, whereas Fig. 2c presents the dynamic spectrum. As
made evident by Fig. 2c, only a reduced number of modes have amplitudes that are relatively
important when compared with the largest one. These results are consistent with those reported
by Ghebali et al. in 6.

Figure 3 shows both the three first POD modes (Figs. 3a, 3c, 3e) and the three dynamic modes
with largest associated amplitudes (Figs. 3b, 3d, 3f) for the reference configuration. The first
POD mode, Fig. 3a, presents a spatial structure elongated an aligned with the streamwise direc-
tion. The same is true for the dynamic mode with largest amplitude, Fig. 3b. As the singular
value index increases, the corresponding POD modes show a spatial structure richer in progres-
sively smaller features, cf. Figs. 3c and 3e. Dynamic modes associated with progressively lower
amplitudes behave similarly, see Figs. 3d and 3f.

Figure 2 also contains the singular value distribution (Fig. 2b) and the dynamic spectrum
(Fig. 2c) corresponding to the actuated channel flow. When compared to the reference con-
figuration, in both cases the singular values and the amplitudes are seen to be smaller. This is
a reflection of the reduced turbulence activity in the actuated case.

The corresponding modes associated to the actuated channel flow are presented in Figure 4.
Note that here the most amplified dynamic mode is steady and relatively similar in shape to
that appearing in the reference case. Moreover, note how this mode weighted by the corre-
sponding amplitude α1 accounts for the major part of the Reynolds stresses, see Fig. 1. Once
again, this is in agreement with the results in 6. However, the next mode in importance by
amplification shows a radically different aspect, see Fig. 4d: a low u′v′ meandering structure,
symmetric with respect to the x+ ≈ 300 plane is visible. The next relevant dynamic mode,
in Fig. 4f, presents again an elongated structure aligned with the streamwise direction: this is
reasonable as this mode has a very small λi.

A composite DMD analysis based on λ2-Cf snapshots has also been conducted. The relationships
between singular value distributions and dynamic spectra for both the reference and actuated
configurations are similar to those shown in Figure 2, and are thus not shown here.

Figure 5 reports the three dynamic modes with largest amplitudes for both the reference and
actuated cases. In this case, the spatial distribution of dynamic modes with largest amplitude
present already evident differences: the dynamic mode structure is much more organized in the
actuated case, cf. Figs. 5a and 5b. This difference is maintained for the other dynamic modes
shown, and it is particularly remarkable for the third mode, compare Figs. 5e and 5f.

4 CONCLUSIONS

In this contribution we have conducted composite POD/DMD analyses of turbulent channel flow
databases obtained with a DNS solver. The composite snapshots have been formed by combining



Figure 1: Results for composite analysis on u′v′-Cf snapshots for reference channel configuration:
〈u′v′〉x,z,t (——) vs contribution from most relevant dynamic mode (–·–·–).

either u′v′ or λ2 spatial fields and Cf .

The beneficial effect of the actuation strategy is observed as a reduction of both the levels of
the singular values distribution and the amplitudes corresponding to the most relevant dynamic
modes. Regarding the spatial organization of POD/DMDmodes, structures corresponding to the
actuated case are more organized, as one would expect. The difference in organization is ob-
served particularly well when the analyses are conducted on snapshots built including the λ2

invariant.

The major problem found so far is related to the management of the large databases employed:
storing, accessing and processing the input and transferring and organizing the results obtained
are challenging activities. This problem is foreseen to increase as databases at larger Reτ
numbers are considered. A possible avenue to handle this strategy is the application of non-
uniform and data compressing formulations of the DMD algorithm, see 7.

ACKNOWLEDGMENTS

We gratefully acknowledge Professor Maurizio Quadrio (Politecnico di Milano) for providing the
DNS code employed to generate the databases considered in this work.

First author has been supported through the European Commission Research and Innovation
action DRAGY (GA-690623).



(a) (b)

(c) (d)

Figure 2: Results for composite analysis on u′v′-Cf snapshots for reference (2a and 2c) and
actuated channel (2b and 2d)flows: singular values in 2a and 2b; amplitudes of dynamic modes
in 2c) and 2d.
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Figure 3: Results for composite analysis on u′v′-Cf snapshots for reference channel flow: first
POD modes in (a), (c), (e); most relevant dynamic modes in (b), (d), (f).
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Figure 4: Results for composite analysis on u′v′-Cf snapshots for actuated channel flow: first
POD modes in (a), (c), (e); most relevant dynamic modes in (b), (d), (f).
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Figure 5: Results for composite analysis on λ2-Cf snapshots for channel flows: most relevant
dynamic modes. reference flow in (a), (c), (e); actuated flowin (b), (d), (f).
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