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Abstract. Predictions from numerical hemodynamics are increasingly adopted and
trusted in the diagnosis and treatment of cardiovascular disease. However, the predic-
tive abilities of deterministic numerical models are limited due to the large number of
possible sources of uncertainty including boundary conditions, vessel wall material prop-
erties, and patient specific model anatomy. Stochastic approaches have been proposed
as a possible improvement, but are penalized by the large computational cost associated
with repeated solutions of the underlying deterministic model. We propose a stochas-
tic framework which leverages three cardiovascular model fidelities, i.e., three-, one- and
zero-dimensional representations of cardiovascular blood flow. Specifically, we employ
multilevel and multifidelity estimators from Sandia’s open-source Dakota toolkit to re-
duce the variance in our estimated quantities of interest, while maintaining a reasonable
computational cost. The performance of these estimators in terms of computational cost
reductions is investigated for both global and local hemodynamic indicators.

1 INTRODUCTION

Hemodynamic models are increasingly used for disease diagnosis, treatment and for
medical device design. A widespread adoption of such models in the clinical routine
is hindered by the inability of deterministic modeling to quantify the variability in the
predicted hemodynamic indicators of interest, and therefore to account for various sources
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of uncertainty related, for example, to boundary conditions, segmented anatomy and
material properties of living tissue. Stochastic modeling offers a solution to this problem
at the expense of a substantial increase in the computational cost.

In this study, we leverage a cascade of model complexities arising naturally in the
context of cardiovascular hemodynamics. Specifically, we discuss the use of estimators
that are able to accurately capture the expected values of the quantities of interest while,
at the same time, shifting the computational burden to the repeated solution of lightweight
models of the physical system under study. To do so, we have developed automatic tools
for the creation of lower fidelity cardiovascular models and have integrated these multiple
fidelities with Sandia National Laboratories’ Dakota toolkit [1] for UQ and optimization.

To frame the problem we are trying to solve in more formal terms, consider a complete
probability space (Ω,F , P ) where Ω is a set of elementary events, F is a Borel σ-algebra
of 2Ω, and P is a probability measure with values in [0, 1] over events in F . A vector of
random variables ξ = (ξ1, ξ2, . . . , ξd) ∈ Rd with components ξi : Ω → Σξi , i = 1, . . . , d of
marginal distribution ξi ∼ ρi(ξi) and joint probability density ρ(ξ), is used to parameterize
model uncertainty. Finally, x ∈ D ⊆ Rn and t ∈ R+ are the spatial and temporal
variables, respectively. Specifically, we are interested in the statistical characterization
of a generic quantity of interest (QoI) Q = Q(x, ξ, t), e.g., through its m-th statistical
moment E[Qm] where, for a given realization ξ(i) of the random inputs, Q is determined
through the numerical solution of the incompressible Navier-Stokes equations on D ⊆ Rn.

2 MULTIFIDELITY UNCERTAINTY PROPAGATION

Several challenges are typically faced when quantifying uncertainty in cardiovascular
simulation outputs. First, several heterogeneous sources of uncertainty may affect the
QoIs. Moreover, random inputs may be partially assimilated from clinical data, partially
generated from spatio-temporal processes (e.g., random field representation of tissue con-
stitutive properties) and partially assumed. Propagation of a large number of inputs poses
significant challenges to approaches such as spectral stochastic expansion [2, 16], due to
the fast increase of the computational complexity of tensor-products in high-dimensions.
Additionally, three-dimensional simulations involve discrete representations with millions
of degrees of freedom that are solved in parallel. Monte Carlo estimators [8] have, in this
context, many desirable properties, i.e., are unbiased, can accommodate heterogeneous
inputs and their rate of convergence does not depend on the underlying dimensionality.
In particular, multilevel and multifidelity Monte Carlo estimators with reduced variance
may be designed not to exceed a given computational budget [5, 4].

2.1 Multilevel and multifidelity Monte Carlo estimators

We introduce the discretization level M associated with the generic output Q, e.g., the
number of degrees of freedom in the spatial or temporal discretization used to generate this
output. The Monte Carlo estimator for the expected value of QM based on N realizations
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is defined as

E[QM ] =

∫
Ω

QM(x, ξ, t) ρ(ξ) dξ ' Q̂MC
M,N =

1

N

N∑
i=1

Q
(i)
M , V[Q̂MC

M,N ] =
1

N
V[QM ], (1)

where the i-th realization is denoted as Q
(i)
M = QM(x, ξ(i), t). We also consider L (dis-

cretization or resolution) levels, i.e., {M` : ` = 0, . . . , L}, where M0 < M1 < · · · < ML :=
M . Using linearity of expectation and a telescoping sum, we re-write 1 as

E[QM ] = E[QM0 ] +
L∑
`=1

E[QM`
−QM`−1

] =
L∑
`=0

E[Y`], with Y` = QM`
−QM`−1

, (2)

with QM−1 = 0. The multilevel Monte Carlo (MLMC) estimator for E[QM ] is assembled
from the estimators E[Y`]. At level `, N` realizations are used to estimate QML

M as

Q̂ML
M,N =

L∑
`=0

Ŷ MC
`,N`

=
L∑
`=0

1

N`

N∑̀
i=1

Y
(i)
` , V[Q̂ML

M,N ] =
L∑
`=0

1

N`

V [Y`] . (3)

As before, the i-th realization Y
(i)
` is evaluated at the i-th, i = 1, . . . , N`, realization of

the stochastic vector ξ with distribution ρ(ξ). The advantages of the MLMC method
come from the hierarchical nature of Y`, the difference in the QoI between successive
resolutions. As QM → Q for M →∞, it follows that Y` → 0 as ` increases, and therefore
the contribution to the overall variance from different resolution levels decreases with `,
shifting the computational burden to computationally cheaper coarser levels. The optimal
sample allocation from each level can be determined by minimizing the computational cost
of MLMC subject to a fixed target accuracy ε2, evenly split between the variance and bias
terms in the decomposition of the mean squared error. This leads to an optimal number
of samples N` equal to

N` =
2

ε2

(
L∑
k=0

√
V[Yk] Ck

)√
V[Y`]

C`
. (4)

where C` is the computational cost of one evaluation of Y`. For an extensive review on
MLMC estimators the reader can refer to [6].

Multifidelity approaches represent a flavor of the better known control variate (CV)
variance reduction technique in Monte Carlo estimation. Two models are now defined,
i.e., a low-fidelity (LF) and a high-fidelity (HF) model with an independent discretization
level M . In this approach, the generic QoI QHF

M is replaced by QHF,CV
M which embeds a

correction term based on the LF model [10, 9]

Q̂HF,CV
M,N = Q̂HF

M,N + α
(
Q̂LF
M,N − E[QLF

M ]
)
, V[Q̂HF,CV

M,N ] = V[Q̂MC
M,N ]

(
1− r ρ2

r + 1

)
, (5)
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with optimal regression coefficient α related to the Pearson’s correlation coefficient be-
tween the LF and HF estimators, while r denotes the additional number of independent
LF realizations ∆LF = r NHF needed to estimate E[QLF

M ]. For an extension to more than
two fidelities, the reader may refer to [11].

Interestingly, we can combine the two ideas discussed above to further reduce the
variance of our estimators, i.e., we consider one control variate for each (high-fidelity)
resolution level ` or, equivalently, apply the multifidelity control variate idea to the Monte
Carlo estimators associated to the difference Y`. Note that, unlike our derivation below, a
different numbers of levels can be accommodated for high-fidelity and low-fidelity models.
Starting from (2) we write a multilevel-multifidelity (MLMF) estimator as

E[QHF
M ] = E[QHF

M0
] +

L∑
`=1

E[QHF
M`
−QHF

M`−1
] =

L∑
`=0

E[Y HF
M`

] ≈
L∑
`=0

Ŷ HF,MC

M`,N
HF
`

≈
L∑
`=0

(
Ŷ HF,MC

M`,N
HF
`

+ α`

{
Ŷ LF,MC

M`,N
HF
`
− E[Y LF

M`
]
})

.

(6)

As before, we can determine the optimal sampling distribution (by level) NHF
` to compute

Ŷ HF,MC

M`,N
HF
`

and Ŷ LF,MC

M`,N
LF
`

[5].

Finally, note that in addition to estimating quantities aside from the mean value for
the quantity of interest, all the estimators discussed in the above sections can be further
extended to handle multiple quantities of interest at once.

3 Modeling the cardiovascular system at multiple fidelities

High fidelity three-dimensional cardiovascular models are typically constructed from
clinical image data of specific patients. In our workflow, these images are imported into
the SimVascular open source platform [12] which provides a wide spectrum of algorithms
for two- and three-dimensional segmentation, model creation, application of physiologic
boundary conditions and includes a Streamline Upwind Petrov-Galerkin (SUPG) incom-
pressible Navier-Stokes finite element solver. Hemodynamic simulations can be run with
rigid or deformable walls, i.e., with or without accounting for the mutual interaction be-
tween fluid and structure. In this study, the coupled momentum method [3] is selected to
model fluid-structure interaction (FSI).

One-dimensional hemodynamics are simulated through an in-house stabilized finite
element solver [7, 14, 13, 15]. Blood is modeled as a Newtonian fluid, flowing along the
axis of cylindrical branches; pressure is assumed to be constant over the entire vessel cross
section, and a non-slip boundary condition is applied at the vessel lumen. The governing
equations are obtained by integrating the incompressible Navier-Stokes equations over the
cross section of a deformable cylindrical domain.

Finally, a lumped parameter network representation of blood flow is used as our lowest-
fidelity model. This is a circuit layout formulated by hydrodynamic analogy in terms
of flow rate (instead of electrical current) and pressure (instead of voltage), where each
circuit element is associated to an algebraic or differential equation. These equations
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are assembled in a system of ODEs which can be efficiently solved numerically with a
4th-order Runge-Kutta scheme. Resistors are used to represent viscous dissipation in
vessels through friction at the endothelium, capacitors are used to represent vascular
tissue compliance, and inductors are used to represent the inertia of blood. A Poiseuille
flow assumption is used to determine the model parameters for these circuit elements.

4 Multilevel/Multifidelity Uncertainty Propagation

This section discusses uncertainty propagation on two hemodynamic models of the
aorto-femoral and coronary circulation, respectively, under steady-state flow and resis-
tance boundary conditions. A steady inflow waveform of 83.333 mL/s is prescribed at
the aortic inlet for both models, consistent with the cardiac output of a healthy subject.
The total outlet resistance is tuned to give a physiologic average pressure of 90 mmHg,
again typical of an healthy subject, distributed proportionally to the outlet area (Mur-
ray’s law, see, e.g., [17]). Thus, outlet resistance can be expressed as a vector R ∈ R9 for
the aorto-femoral model (9 outlets) and R ∈ R10 for the coronary model (10 outlets).

After setting their reference values, the outlet resistances are considered as uncertain,
leading to an input random vector ξ ∼ U [0.7 · R, 1.3 · R], i.e., with values drawn from
uniform distributions of ±30% of the reference outlet resistance. Moreover, steady-state
flows and pressures at the outlets are considered as our output quantities of interest, while
wall shear stresses (WSS) are also considered for the coronary model.

The reduction in variance for these quantities of interest was compared for seven dif-
ferent estimators: “vanilla” Monte Carlo estimator (three-dimensional model only), two
multifidelity estimators, three multilevel estimators, and one multilevel/multifidelity es-
timator, each discussed in Section 2. Schematics showing the relationship between the
models in each method are shown in Figure 1, while a summary of the formulas for
expected value and variance of our quantities of interest is provided in Table 1.

(a) Multifidelity. (b) Multilevel. (c) Multilevel/Multifidelity.

Figure 1: Schematics of multifidelity and multilevel UQ approaches.
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Method Expected Value Estimator Variance

MC Q̂MC
N3D

=
1

N3D

N3D∑
i=1

Q(i) V [Q]

N3D

MFA Q̂MFA
N3D

= Q̂MC,3D
N3D

+ α3D,1D

(
Q̂MC,1D
N3D

− E
[
QMC,1D
N1D

])
V
[
Q̂MC
N3D

](
1− r3D,1D

1 + r3D,1D

ρ2
3D,1D

)
MFB Q̂MFA

N3D
= Q̂MC,3D

N3D
+ α3D,0D

(
Q̂MC,0D
N3D

− E
[
QMC,0D
N0D

])
V
[
Q̂MC
N3D

](
1− r3D,0D

1 + r3D,0D

ρ2
3D,0D

)

MLA Q̂MLA
N3D

= Q̂MC,1D
N1D−N3D

+ Ŷ 3D,1D
N3D

V[Q1D
N1D−N3D

]

N1D −N3D

+
V[Y 3D,1D

N3D
]

N3D

MLB Q̂MLB
N3D

= Q̂MC,0D
N0D−N3D

+ Ŷ 3D,0D
N3D

V[Q0D
N0D−N3D

]

N0D −N3D

+
V[Y 3D,0D

N3D
]

N3D

MLC Q̂MLC
N3D

= Q̂MC,0D
N0D−N1D

+ Ŷ 1D,0D
N1D−N3D

+ Ŷ 3D,1D
N3D

V[Q0D
N0D−N1D

]

N0D −N1D

+
V[Y 1D,0D

N1D−N3D
]

N1D −N3D

+
V[Y 3D,1D

N3D
]

N3D

MLMF Q̂MLMF
N3D

= Q̂1D
N1D−N3D

+ α1D,0D

(
Q̂0D
N1D−N3D

− Q̂0D
N0D−N3D

)
+ Ŷ 3D,1D

N3D

V[Q1D
N1D−N3D

]

N1D −N3D

(
1− r1D,0D

1 + r1D,0D

ρ2
r1D,0D

)
+

V[Y 3D,1D
N3D

]

N3D

Table 1: Expected values and variances of the Monte Carlo, Multifidelity, Multi-
level and Multilevel/Multifidelity estimators with Y 3D,1D

N3D
=
(
Q3D
N3D
−Q1D

N3D

)
, Y 3D,0D

N3D
=(

Q3D
N3D
−Q0D

N3D

)
, Y 1D,0D

N0D−N1D
=
(
Q1D
N0D−N1D

−Q0D
N0D−N1D

)
.

A fixed number of forward solutions associated with uniform realizations ξ(i) were
generated for this uncertainty propagation task. Specifically, 100 three-dimensional, 2 000
one-dimensional and 10 000 zero-dimensional simulations were used. Note how the first
realizations are overlapping for the three model fidelities, i.e., the first 100 simulations
were performed using the same random inputs for all fidelities, whereas the same 2 000
simulations were run for the one- and zero-dimensional models. All results were used in
computing the estimators discussed above.

4.1 Aorto-Femoral model

The aorto-femoral model is a patient-specific model of a healthy abdominal aorta with
iliac and femoral arteries, characterized by nine outlet branches. This model has no un-
usual/pathologic anatomical features such as stenosis or aneurysm, and has long, straight,
quasi-cylindrical branches without large area differences at the outlets. The three model
fidelities are illustrated in Figure 2. The relative cost of solving these models is reported
in the footnote of Table 2. The difference in computational cost between 0D-1D and
1D-3D simulation time is very significant, i.e., several orders of magnitude. After ex-
amining the computational cost, outputs were compared to determine their degree of
similarity/correlation across model fidelities. The distributions and ranges of the QoIs
was found similar across fidelities which, together with a remarkable difference in compu-
tational cost, confirms a MLMF estimator to be particularly well-suited for this case.

Moreover, an idea of the reduction in variance with respect to the “vanilla” Monte Carlo
estimator can be obtained by computing the Pearson’s correlation coefficient. Figure 3
shows the square correlations for all QoIs, confirming an excellent potential for the MLMF
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(a) 3D model. (b) 1D model.
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Figure 2: Schematic view of the three model fidelities for the aorto-femoral model.

estimator to be associated with significant variance reduction with a small additional
computational effort. The overall computational cost, in 3D simulation time units, for
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Figure 3: Correlations and accuracy for QoI in aorto-femoral model.

the proposed multilevel/multifidelity estimators is shown in Table 2. Note that due to the
cost difference across fidelities, several thousand 1D and 0D simulations contribute less
than the cost of five additional 3D runs. Shaded rows on this table are used to highlight
the methods using the same subset of the simulation results, and therefore having the
same computational cost (though the associated variance reduction may vary).

A measure of the accuracy of output flow and pressure QoIs is computed in Figure 3
for each estimator. Accuracy is defined as the ratio of the ±3σ confidence interval to
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expected value,

Accuracy[Q] =
6
√

V[Q]

E[Q]
=

(µ+ 3σ)− (µ− 3σ)

µ
=

6σ

µ
.

The mean flow at the right renal artery (RR in Figure 3b) appears to be the least accurate
QoI. However, all multilevel and multifidelity estimators are associated to an accuracy
lower than 3%, which is regarded as more than satisfactory in a clinical context. Also,
pressure estimators are consistently more robust than flow estimators for this model. This
is expected, as outlet pressures vary linearly as a function of outlet resistance while flow
is distributed to the different branches inversely proportional to the associated resistance.
The MFB estimator, i.e., the 3D-0D multifidelity estimator, provides the overall minimum
variance for this model. This is expected due to the reduced geometrical complexity of
the aorto-femoral model which justifies the high correlation between the QoIs of these two
model fidelities. A reduced degree of correlation and less accurate estimators are instead
expected for QoI such as local flow indicators or for pathological anatomies.

In Table 2, we extrapolated the number of total simulations required to obtain 1%
accuracy in the mean flow at the right renal artery. The MFB estimator (together with
the MFA estimator) requires a very limited number of 3D model solutions, compatible
with a reasonable computational budget. The MFB estimator also requires three orders
of magnitude fewer 3D model solutions than vanilla Monte Carlo, and approximately
one order of magnitude fewer solutions than all multilevel estimators. These results are
consistent with the high correlation of right renal flow among the models, as seen in
Figure 3a, and the relatively small variance decay for this quantity of interest. Since the
multilevel estimators rely on variance decay across levels for improved accuracy while the
multifidelity estimators rely on high correlations, the latter require fewer model solutions
to produce a target 1% accuracy, as expected.

Pilot Run Extrapolated cost
Effective Cost (*) No. 3D No. 1D No. 0D Effective Cost No. 3D No. 1D No. 0D

Method (3D Simulations) Simulations Simulations Simulations (3D Simulations) Simulations Simulations Simulations

MC 100 100 – – 9 885 9 885 – –
MFA 104.4192 100 2 000 – 56 21 15 681 –
MFB 100.1578 100 – 10 000 39 36 – 154 880
MLA 104.4192 100 2 000 – 305 212 41 990 –
MLB 100.1578 100 – 10 000 156 150 – 342 060
MLC 104.5754 100 2 000 9 900 165 156 1 324 351 940
MLMF 104.5754 100 2 000 9 900 165 156 1 249 362 590

(*) 3D model cost: 96hr (1); 1D model cost: 11.67min (2×10−3); 0D model cost: 5sec (1.45×10−5).

Table 2: Inter-fidelity computational cost comparison and extrapolation for aorto-femoral
model.

4.2 Coronary model

The coronary model is generated from a healthy anatomy including aorta, left and
right coronary arteries and ten coronary branches. No unusual/pathologic anatomical
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feature, e.g., stenosis or aneurysm, is present in this model, similar to the aorto-femoral
model discussed in the previous section. However, the fluid dynamics in the coronaries
is associated with a higher degree of geometric complexity, due to large area differences
between coronary and aortic inlets/outlets. The three model fidelities considered in this
study are illustrated in Figure 4, with relative solution costs reported as a footnote in
Table 3. For this coronary model, we have considered additional QoIs, such as several
measures of wall shear stress (WSS), including its mean, minimum, and maximum values
in both the whole model and individual branches and the percentage of lumen surface
area on the model with WSS below a certain threshold. In the interest of brevity, we only
discuss the results on the mean, minimum, and maximum WSS over the whole model.

(a) 3D model (b) 1D model
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Figure 4: Schematic view of the three model fidelities for the coronary model.

Pearson’s square correlations are still very close to one for the flows and pressures, as
shown in Figure 5a. Conversely, the correlations for the three WSS-based quantities of
interest (right of W in Figure 5a) vary significantly. The overall computational cost, in
3D simulation time units, for the proposed multilevel/multifidelity estimators is reported
on the footnote in Table 3, while the resulting accuracies in the QoIs can be seen in
Figure 5b and Figure 5c. All multilevel and multifidelity estimators of flows and pressures
are associated to an accuracy lower than 9%, with pressure estimators consistently more
robust than flow estimators for this model.

Finally, the total extrapolated number of simulations to obtain 1% accuracy for QoI
LC1Sub3 is reported in Table 3. The MFA estimator requires only seven 3D model
simulations, much less than required for a similar extrapolation calculation in the aorta-
femoral model. The MLC and MLMF estimators also require very limited numbers of 3D
model simulations, showing these methods can be compatible with limited computational
budgets. The MFA and MLA estimators both perform noticeably better than other
multilvel estimators. These results are consistent with the high correlation shown in
Figure 5a, and the relatively small associated variance decay.
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Figure 5: Correlations and accuracy in QoI for coronary model.

Pilot Run Extrapolated cost
Effective Cost No. 3D No. 1D No. 0D Effective Cost No. 3D No. 1D No. 0D

Method (3D Simulations) Simulations Simulations Simulations (3D Simulations) Simulations Simulations Simulations

MC 100 100 – – 55 465 55 465 – –
MFA 100.6410 100 2 000 – 30 7 71 640 –
MFB 100.1644 100 – 10 000 337 319 – 1 061 964
MLA 100.6410 100 2 000 – 92 47 140 351 –
MLB 100.1644 100 – 10 000 464 442 – 1 293 914
MLC 100.8037 100 2 000 9 900 42 32 9 862 395 160
MLMF 100.8037 100 2 000 9 900 40 31 6 886 405 863

(*) 3D model cost: 317hr (1); 1D model cost: 5.65min (3×10−4); 0D model cost: 19sec (1.7×10−5).

Table 3: Inter-fidelity computational cost comparisons for coronary model and extrapo-
lated cost for 1% accuracy on the mean flow at left coronary (LC1 Sub3) artery.

5 Discussion and conclusion

In this exploratory study, we aimed to quantify the computational savings produced by
MLMF estimators in cardiovascular modeling. In this context, the two uncertainty prop-
agation test cases on aorto-femoral and coronary models serve to demonstrate the com-
putational gain for possible future integration into our cardiovascular modeling pipeline.

Encouraging results were obtained. Specifically, we observed high correlations across
pressure and flow QoIs for the two analyzed models, characterized by increasing geometri-
cal complexity. These high correlations, together with a large range in computational cost
suggested how a reasonable extrapolated computational budget is achievable with multi-
fidelity estimators, as shown in Table 2 and Table 3. Substantial computational savings
were also obtained by multilevel/multifidelity estimators compared to standard Monte
Carlo, i.e., the number of 3D simulations needed to reach a target estimator variance was
reduced by several orders of magnitude.

Future work will be devoted to include increasingly fine mesh discretizations, combining
multiple levels and fidelities. This process was performed (not shown in this contribution)

10



Daniele E. Schiavazzi, Casey M. Fleeter, Gianluca Geraci and Alison L. Marsden

during the development of the Dakota interface, using coarse, medium and fine meshes
with both the three- and one-dimensional model fidelities (six models in total). Simulation
realism will also be improved in future work. In this study, for example, we used simple
resistors as boundary conditions, while RCR or closed-loop circuits are known to provide
a more accurate physiological response. Also, pulsatile flow conditions will be considered
together with local hemodynamic QoIs, averaged over one heart cycle. Finally, pathologic
or diseased anatomies, e.g., abdominal aortic aneurysm or coronary artery stenosis will
be investigated to improve our understanding of the performance of MLMF estimators
for both healthy and pathologic patient-specific models.
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