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Abstract. In wall-modeled large eddy simulations (WM-LES) based on wall-stress-
models, flow scales are resolved in the outer boundary layer and modeled in the inner
layer. In order to avoid the so-called “log-layer mismatch”, we take the thickness hwm of
the wall-modeled layer not to be the typically used frist grid layer thickness, but we take
it independent of the grid as 20% of the boundary layer thickness. Important input to the
wall-shear-stress approach is the near-wall velocity profile for which various approxima-
tions exist. In this work, we compare the results of the wall-shear-stress approach with the
near-wall velocity profile given by Reichardt’s law to the results of the wall-shear-stress
approach where the near-wall velocity profile is given by DNS data. The WM-LES ap-
proach is implemented in the context of implicit large eddy simulations (ILES) based on
high-order Discontinuous Galerkin methods. Numerical results are shown for the periodic
channel flow. Comparisons are given for wall-modeled ILES to ILES (without wall-model)
as well as to DNS data.

1 INTRODUCTION

Nowadays, large eddy simulations (LES) are feasible for flows of low and moderate
Reynolds numbers. For high Reynolds number flows they are computationally too ex-
pensive due to the grid resolution requirements near the walls. Wall-modeled large eddy
simulations (WM-LES) offer a way to reduce the resolution requirements near the wall
and thus the computational cost.

In this work we consider a WM-LES method based on wall-stress-models. The basic
idea in WM-LES is to resolve the flow scales in the outer boundary layer (y > hwm) and
to model the inner layer (y < hwm) where hwm = 0.2δ is the thickness of the wall-modeled
layer and δ is the boundary layer thickness. In a wall-stress-model approach the no-slip
wall boundary condition is replaced by a slip-wall boundary condition and the viscous
boundary flux is modified according to a shear stress at the wall. The wall stress to be
prescribed at a boundary point is obtained from a given near-wall velocity profile with
input data taken from the flow field at a point located in a distance of hwm normal to
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the wall. Particular emphasis in this work is laid on hwm being defined without reference
to the computational mesh. In particular, we do not take hwm to be the first cell layer
thickness, like in e.g. [2], but we take hwm = 0.2δ due to which the input data to the
near-wall velocity profile might originate from several (possibly in the order of 10) near-
wall cell layers distance from the wall boundary. As argued in Larsson et al.[6], hwm
being defined grid independent allows to generate grid converged WM-LES results which
requires a first layer thickness h1 < hwm and avoids the so-called “log-layer mismatch”. In
addition, not requiring hwm = h1 increases the flexibility of grids usable in this WM-ILES
approach which significantly simplifies the generation of new grids.

In this work the WM-LES approach is implemented in the context of implicit large
eddy simulations (ILES) based on high-order Discontinuous Galerkin methods.

In the following, we introduce the notations and the compressible Navier-Stokes equa-
tions in Section 2. We give details on the wall-modeled ILES approach in Sections 3,
details on the spatial and temporal discretization in Section 4, and we show numerical
results in Section 5 applying the approach to the channel flow test case at a friction
Reynolds number of Reτ = 395.

2 THE COMPRESSIBLE NAVIER-STOKES EQUATIONS

We consider the compressible Navier-Stokes equations

∂u

∂t
+∇ · (F c(u)−Fv(u,∇u)) = 0 in Ω. (1)

Here, the vector of conservative variables u, the convective flux F c = (f c1 , f
c
2 , f

c
3), and the

diffusive flux Fv = (fv1 , f
c
2 , f

c
3)> are given by

u =

 ρ
ρvi
ρE

 , f cj (u) =

 ρvj
ρvivj + pδij

ρHvj

 , fvj (u,∇u) =

 0
τij

τjkvk +KTxj

 , (2)

for i, j = 1, 2, 3, where ρ, v = (v1, v2, v3)>, p and E denote the density, velocity vector,
pressure and specific total energy, respectively. Here, H is the specific total enthalpy given
by H = E + p

ρ
= e + 1

2
v2 + p

ρ
where e is the specific static internal energy. The pressure

is determined by the equation of state of an ideal gas p = (γ − 1)ρe, where γ = cp/cv is
the ratio of specific heat capacities at constant pressure, cp, and constant volume, cv; for
dry air, γ = 1.4. Furthermore, the viscous stress tensor is given by τ = µS where µ is
the dynamic viscosity coefficient, and S = ∇v + (∇v)> − 2

3
(∇ · v)I the traceless strain

tensor. Finally, K is the thermal conductivity coefficient, and the temperature T is given
by e = cvT where KT = µγ

Pr

(
E − 1

2
v2
)
, and Pr = µcp

K = 0.72 is the Prandtl number.
The compressible Navier-Stokes equations (1) on the domain Ω ⊂ R3 are subject to

boundary conditions on the boundary Γ = ∂Ω, in particular, periodic boundary conditions
on Γperiodic ⊂ Γ, and no-slip (vanishing velocity) wall boundary conditions and adiabatic
conditions,

v = 0, n · ∇T = 0, (3)
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Figure 1: Flow field data at pdonor is used to define the viscous flux in the boundary point pdest.

at adiabatic walls ΓW,adia ⊂ Γ. Here, the viscous flux in normal direction reduces to

n · Fv(u,∇u) = (0, (τn)i,n · (τv))>, (4)

with (τn)i = τijnj and n · (τv) = njτjkvk.

3 THE WALL-STRESS-MODEL APPROACH

In the wall-stress-model approach considered the no-slip wall boundary condition is
replaced by a slip (vanishing normal velocity, n · v = 0) wall boundary condition, and
instead of prescribing the two tangential velocity components to zero the boundary flux
is modified to prescribe a specific wall shear stress τw at the boundary.

While the shear stress evaluated directly at the wall is subject to an underresolved
turbulent flow close to the wall, the basic idea in the wall-stress-model approach is that
information for the evaluation of an improved value of τw is taken from the flow field in a
region close to the wall but sufficiently far from the wall such that flow scales are resolved.
Typically this information is retrieved from the flow field in a distance of 0.2δ from the
wall, where δ is the boundary layer thickness.

In detail, the wall-stress-model approach considered consists of following steps: For
each integration point pdest on a wall-modeled boundary face:

1. (In a pre-processing step) find a point pdonor normal to the wall in a distance of
(approx.) y = 0.2δ to pdest.

2. From the solution (instantaneous flow field) at point pdonor (cf. Figure 1) take

• the tangential velocity vt = (I − n× n)v,

• the density ρ, the kinematic viscosity ν, and

• the distance y = dist(pdonor, pdest).
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3. Solve u+(y+) = |vt|/uτ with y+ = yuτ/ν for the friction velocity uτ by solving

F (uτ ) = |vt|/uτ − u+(yuτ/ν) = 0 (5)

for uτ using Newton’s method.

4. Compute the wall shear stress τw = ρu2
τ .

5. In pdest apply a slip-wall boundary condition and a viscous numerical flux n · Fv
with prescribed τw.

Here, u+(y+) with u+ = u/uτ and y+ = yuτ/ν is the near-wall velocity profile for which
various algebraic approximations are available, e.g.

• the logarithmic law-of-wall (log-law): u+(y+) = min(y+, ln(y+)/κ+ c), and

• the Reichardt’s law-of-wall: u+(y+) = ln(1+κy+)/κ+A(1−e−y+/B−y+/Be−y
+/C).

Note, that in Section 5 we compare our numerical solutions against these algebraic ap-
proximations with the Karman constant κ = 0.38 and the constant c = 4.1 [8], and
A = c− ln(κ)/κ, B = 11 and C = 3 [2].

At the wall-modeled boundary the viscous (normal and adiabatic) flux (4) is replaced
by a viscous flux which prescribes the wall shear stress τw (cf. Step 5 above). For this,
we split the vector τn into a wall normal and a wall tangential part as follows

τn = (τn)n + (τn)t, (6)

with (τn)n = (n ⊗ n)(τn), and (τn)t = (I − n ⊗ n)(τn), such that (τn)t · n = 0. Note,
that the space of tangential vectors is a two-dimensional space. Given a (normalized)
tangential velocity vector v̂t = vt/|vt|, with vt = (I − n ⊗ n)v one could further split
(τn)t into a part orthogonal and a part parallel to v̂t,

τn = (τn)n + (τn)t,v̂⊥
t

+ (τn)
t,v̂

‖
t
. (7)

For wall-modelled (I)LES the no-slip adiabatic boundary ΓW,adia with condition (3) is
replaced by a slip-wall boundary ΓW,slip with condition v · n = 0, and a viscous boundary
flux is used including a prescribed tangential

(τn)wm
t = −τwv̂t, (8)

where the wall shear stress τw value is obtained from a wall model. There are various
possible formulations of the resulting viscous boundary flux (cf. Table 1). Given that
the adiabatic no-slip wall boundary condition (3) prescribes four boundary quantities we
prefer variant A) in Table 1 over the others due to the matching number of prescribed
boundary quantities.
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Table 1: Slip wall boundary with wall shear stress prescribing viscous boundary flux.

v · n = 0 and the viscous # of prescribed
Variant (normal) boundary flux given by quantities

A) n · Fv = (0, (τn)n + (τn)wm
t , n · (τv))> 4 3

B) n · Fv = (0, (τn)n + (τn)wm
t , n · (τv) +Kn · ∇T )> 3 7

C) n · Fv = (0, 0 + (τn)wm
t , n · (τv))> 5 7

D) n · Fv = (0, (τn)n + (τn)t,v̂⊥
t

+ (τn)wm
t , n · (τv))> 3 7

4 THE SPATIAL AND TEMPORAL DISCRETIZATION

The compressible Navier-Stokes equations (1) are discretized in space using the Dis-
continuous Galerkin (DG) method. To this end, let the domain Ω be subdivided into a
shape-regular mesh Th = {κ} consisting of (possibly curved) elements κ. Furthermore,
let Vp

h be the finite element space consisting of discontinuous vector-valued polynomial
functions of degree p ≥ 0 on Th, then the DG discretization of (1) is given by (cf. [4, 5]):
Find uh in Vp

h such that∫
Ω

(−F c(uh) + Fv(uh,∇huh)) : ∇hvh dx +
∑
κ∈Th

∫
∂κ

(
ĥh − σ̂hn

)
· vh ds

+
∑
κ∈Th

∫
∂κ

(ûh − uh)⊗ n :
(
G>(uh)∇vh

)
ds = 0 (9)

for all vh ∈ Vp
h, where n|∂κ denotes the outward unit normal vector to the boundary

∂κ of element κ. Here, the convective and diffusive numerical flux functions, ĥh and
σ̂h, are approximations to the normal convective flux and the diffusive flux, n · F c(uh)
and Fv(uh,∇huh), respectively. On an interior face ∂κ ∩ ∂κ′ between two neighboring
elements κ, κ′ ∈ Th, the numerical flux functions

ĥh = ĥ(uh,n) = ĥ(u+
h ,u

−
h ,n),

σ̂h = σ̂(uh,∇uh) = σ̂(u+
h ,u

−
h ,∇u+

h ,∇u−h ),
(10)

connect the interior and the exterior traces, u+
h and u−h , and their derivatives, ∇u+

h and
∇u−h , of uh. On a boundary face ∂κ ∩ Γ 6= ∅, the numerical boundary flux functions,

ĥh|Γ = ĥΓ,h = ĥΓ(u+
h ,n),

σ̂h|Γ = σ̂Γ,h = σ̂Γ(u+
h ,∇u+

h ).
(11)
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depend on the interior trace u+
h , directly and/or through the boundary function uΓ(·)

which on the wall boundary is given by

uΓ(uh) = (uh,1,0, uh,5)> on ΓW,adia, (12)

uΓ(uh) =

 1 0 0
0 I− n⊗ n 0
0 0 1

uh on ΓW,slip. (13)

Similarly, the vector-valued numerical flux function ûh in (9) is an approximation to uh
and is given by ûh = û(uh) = û(u+

h ,u
−
h ) on interior faces and by ûh|Γ = ûΓ,h = ûΓ(u+

h ) on
boundary faces. Finally, G(u) denotes the homogeneity tensors defined by fvk (u,∇u) =

Gkl(u)∂u/∂xl, k, l = 1, 2, 3. Assuming that the numerical fluxes ĥh and σ̂h are consistent,
then (9) is a consistent discretization (cf. [4]) of the flow equations (1). The total drag
and lift coefficients, CD and CL, are given by

J(u) =

∫
ΓW

(pn− τ n) ·ψ ds =

∫
ΓW

(p ni − τijnj)ψi ds, (14)

where ψ is given by ψd = 1
C∞

(cos(α), 0, sin(α))> or ψl = 1
C∞

(− sin(α), 0, cos(α))> for the
drag and lift coefficient, respectively, α is the angle of attack, and C∞ = q∞A, where
q = 1

2
ρ|v|2 denotes the dynamic pressure, A denotes a reference area and subscripts ∞

indicate freestream quantities. Let the total force coefficients (14) be discretized by

Jh(uh) =

∫
ΓW

(
ĥΓ,h − σ̂Γ,hn

)
· ψ̃ ds, (15)

with ψ̃ = (0,ψ, 0)>, then (9) is an adjoint consistent discretization (cf. [4]) of the flow
equations (1) which is required for an optimal order of convergence of the force coefficients.

The discontinuous Galerkin discretization employed is based on an ortho-normalized
basis defined in physical space. This non-parameteric approach is particularly well suited
for agglomeration multigrid [1]. The Roe flux is used for convective terms, and the BR2
scheme with Cbr2 = 2 is employed for viscous terms. On (wall and periodic) boundaries
the same numerical fluxes are taken like on interior faces [4]. According to (15) also the
force coefficients are evaluated based on the same numerical boundary fluxes.

For the discretization in time we employ a 5-stage SDIRK (single coefficient diagonal
implicit Runge-Kutta) method of order 4 (cf. Table 2 or [3]). The nonlinear problem
in each stage of the implicit time iteration scheme is solved fully implicitely using a
Backward-Euler iteration which recovers Newton’s method for high CFL numbers. The
linear problems in each of the implicit solver steps are solved with a block-Jacobi pre-
conditioned GMRes method. The blocks are given by lines and are inverted using the
Thomas’ algorithm.

5 NUMERICAL RESULTS

5.1 The channel flow test case

The channel flow is considered in a box [0, Lx]× [0, Ly]× [0, Lz] with Lx = 6.4, Ly = 2δ,
Lz = 3.2 and the boundary layer thickness δ = 1 (cf. Figure 2). Top and bottom
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Table 2: L-stable 5-stage SDIRK method of order 4 [3].
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Figure 2: Channel flow at Reδ = 6875: Instantaneous flow field after 600 CTU.

boundaries are walls, all remaining boundaries are treated as periodic boundaries. In the
following computational results the bulk Reynolds number Reδ = Ubulkδ/ν and the Mach
number M is prescribed. The flow is forced in x-direction by a non-vanishing pressure
gradient dp/dx. Instead of the bulk velocity

Ubulk = 1/Ainflow

∫ Lz

0

∫ Ly

0

udy dz, (16)

with Ainflow = LyLz we consider the mass flow rate averaged over the domain

ṁ = 1/Lx

∫ Lz

0

∫ Ly

0

∫ Lx

0

ρudx dy dz, (17)

and impose the pressure gradient dp/dx such that the prescribed mass flow rate ṁ is
obtained. In each time step dp/dx is modified such that ṁ is retained.
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Figure 3: Channel flow at Reδ = 6875: Flow field averaged over tc ∈ [570, 600] and z ∈ [0, Lz].

Figure 4: Grid for the channel flow: 61x64x64=249856 elements.

For post-processing the flow field is averaged over (a multiple of) 30 convective time
units (CTU equals Lx/U), averaged over z ∈ [0, Lz] (cf. Figure 3) and averaged over
x ∈ [0, Lx]. From the averaged flow field we compute the viscous drag coefficient Cdf and
the wall shear stress τw from the viscous fluxes on the boundary. The friction velocity
uτ =

√
τw/ρ then gives the resulting friction Reynolds number Reτ = uτδ/ν.

In the following we consider the channel flow test case of at the friction Reynolds
number (of approximately) Reτ = 392 and a Mach number M = 0.1. For this we prescribe
the associated bulk Reynolds number Reδ = 6875 and measure the quality of the flow
solution by considering the deviation of the friction Reynolds number obtained by our
ILES and WM-ILES computations against the friction Reynolds number Reτ,DNS = 392.24
obtained in DNS computations by Moser [7].

5.2 Computational grid for the channel flow

For the channel flow test case at Reτ = 392 we consider a grid with 61×64×64 = 249856
elements (cf. Figure 4). Originally being generated for hybrid RANS/LES computations
[9], this grid has an ∆y+ = 0.78, ∆x+ = 41.15 and ∆z+ = 19.61 (∆y = 0.002, ∆x = 0.105
and ∆z = 0.05), and a ∆y stretching factor of 1.14.

5.3 ILES reference computations

For the channel flow test case and the grid described in the previous two subsections
we perform a series of ILES computations which will serve as reference solutions when
jugding the quality of the WM-ILES computations in Section 5.4.

The 5-stage SDIRK method described in Section 4 is used with time step size ∆tc = 0.01

8



Ralf Hartmann

Table 3: Channel flow at Reδ = 6875: p-refinement on mesh of 61x64x64=249856 elements.

p-ref. continued
p DoFs/eqn tc tc Reτ
1 1.0e6 0 - 450

450 - 510 293.08
510 - 570 291.23

2 2.5e6 450 - 480
480 - 540 379.88

540 - 600 379.41
3 5.0e6 540 - 570

570 - 630 391.86
630 - 690 392.48

(in convective time units). Each stage of this implicit RK method is solved using a (slightly
regularized) Newton method (as given by a Backward-Euler iteration with CFL=1015) up
to a nonlinear residual of 10−4. The (exact) Jacobian matrix is assembled once per
timestep and 3 (line-preconditioned) GMRES iterations are performed on each linear
system.

Using the DG discretization described in Section 4 we start from freestream with
the ortho-normalized basis of polynomial degree 1 for 450 convective time units (CTU),
subsequently performing two global p-refinements, we continue with a polynomial degree
2 for 90 CTU and with a polynomial degree 3 for another 30 CTU. The computations are
then further continued for averaging the solutions and evaluating velocity correlations.
Details of these computations are given in Table 3. For each of the polynomial degrees
p = 1, 2 and 3 (column 1), it includes the number of degrees of freedoms per equation
(DoFs/eqn) in colum 2, the simulation time in convective time units between p-refinement
steps (col. 3) and for continued averaging (col. 4) and the friction Reynolds numbers
obtained in column 5. Here, we see that while there is quite a large deviation of the
resulting friction Reynolds numbers Reτ for p = 1 and p = 2 from the friction Reynolds
number Reτ,DNS = 392.24 by Moser[7], they are quite close for p = 3. Mach number
isosurfaces of the p = 3 (instantaneous) solution at tc = 600 are shown in Figure 2.

The resulting averaged u-velocities are shown in Figure 5 together with the averaging
period and the associated friction Reynolds numbers. Here, we see that while the p = 1
and p = 2 solution are quite far from the DNS solution, the p = 3 solution lies almost
on top of the DNS solution. In Figure 5 each of the p = 1, 2 and 3 velocity profiles is
normalized with the corresponding uτ value which differs in the three computations and
thus leads to different y+ values of the opposite wall (between y+ = 600 and y+ = 800).
The same data normalized with a common value uτ,DNS is shown in Figure 6. Finally,

the Reynolds stresses v′iv
′
j

+
for p = 2 and 3 are shown in Figure 7. Here, again, we see

quite a difference between the p = 2 results and the DNS results, but recognize that the
p = 3 results are very close to the DNS results.
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Figure 5: ILES for the channel flow: Velocity profiles u+(y+) of averaged solutions of the p = 1, 2
and 3 computations compared to DNS[7]. Normalization of u+ and y+ is based on uτ of the p = 1, 2, 3
computations.

Figure 6: ILES for the channel flow: Velocity profiles u+(y+) of averaged solutions of the p = 1, 2 and
3 computations compared to DNS[7]. Normalization of u+ and y+ is based on uτ,DNS.
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Figure 7: ILES for channel flow: Reynolds stresses v′iv
′
j

+
of the p = 2 and 3 computations compared to

DNS[7]. Normalization is based on uτ,DNS.

5.4 WM-ILES computations

In this section we now employ the wall-shear-stress approach described in Section 3
on the channel flow. In particular, we consider the wall-stress-model approach with the
near-wall velocity profile u+(y+) given by Reichardt’s law. As Reichardt’s law represents
an approximation only to the “exact” velocity profile as given by DNS (cf. Figure 5), we
consider the wall-shear-stress approach also with Reichardt’s law replaced by DNS data.
This allows us to investigate the difference incurred by considering an approximation
(like Reichardt’s law) only to the near-wall velocity profile, and the maximal theoretical
improvement which could be achieved when considering an improved(optimal) model of
the near-wall velocity profile.

Like for the LES computations in Section 5.3 we start from freestream with the wall-
shear-stress approach based on Reichardt’s law with p = 1, and subsequently increase the
polynomial degree to p = 2 and p = 3. Then each of the p = 1, 2 and 3 computations are
further continued for averaging. We perform the same steps independently for the wall-
shear-stress approach with u+(y+) given by DNS data. The resulting friction Reynolds
numbers are collected in Table 4. For each polynomial degree it includes the number of
degrees of freedom per equation, the friction Reynolds numbers Reτ obtained by ILES,
and those obtained by the two versions of WM-LES together with the deviation of the Reτ
values from Reτ,DNS given as percentages. Here we see that the Reτ values obtained by
WM-LES are higher while those of ILES are lower than Reτ,DNS. However, the Reτ values
of WM-LES are closer to Reτ,DNS than those of ILES. This is clearly visible for p = 1 but
still significant for p = 2. Furthermore, we see that the results of WM-ILES based on
Reichardt’s law are, as expected, not as good as those of WM-ILES with u+(y+) given by

11
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Table 4: Channel flow at Reδ = 6875: Comparison of friction Reynolds numbers for ILES and two
versions of WM-ILES (once u+(y+) is given by Reichardt’s law and once given by DNS data) compared
to Reτ,DNS [7]. Reτ values are computed from solutions averaged over 60 CTU (for ILES) and 120 CTU
(for WM-ILES). Deviations of computed Reτ values from Reτ,DNS are given as percentages.

DoFs/ WM-ILES WM-ILES DNS
p eqn ILES u+(y+)=Reichardt u+(y+)=DNS data [Moser et al.]

Reτ Reτ Reτ Reτ,DNS

1 1.0e6 293.08 (-25.3%) 415.24 (5.9%) 408.98 (4.3%)

392.24

291.23 (-25.8%) 418.81 (6.8%) 409.89 (4.5%)
415.09 (5.8%) 408.47 (4.1%)

2 2.5e6 379.88 (-3.2%) 403.75 (2.9%) 400.42 (2.1%)
379.41 (-3.3%) 404.93 (3.2%) 399.78 (1.9%)

3 5.0e6 391.86 (-0.1%)
392.48 (0.06%)

DNS data. Figure 8 shows the mean velocity profiles of the WM-LES computation based
on Reichardt’s law compared to those of ILES and DNS. Here, we see that in a large
range below and above y = 0.2δ the WM-LES profiles are closer to DNS than the ILES
profiles. This is clearly visible for p = 1, but a significant improvement is visible also for
the p = 2 results. In fact, in a region close to y = 0.2δ the p = 2 results of WM-LES are
almost on top of the p = 3 ILES results.

6 CONCLUSIONS

In the context of high-order Discontinuous Galerkin methods, we developed a wall-
modeled ILES method based on wall-stress-models. The thickness hwm of the wall-
modeled layer is taken as hwm = 0.2δ independent of the grid. We compared channel
flow computations based on ILES with those based on two versions of WM-ILES. Com-
parison of our numerical results to DNS data shows that the WM-ILES computations
give a significantly more accurate friction Reynolds number than the ILES computations.
Furthermore, the WM-ILES approach with the near-wall velocity profile given by Re-
ichardt’s law is, as expected, not as accurate as the WM-ILES near-wall velocity profile
given by DNS data. The difference between the two WM-ILES computations shows the
maximal potential improvement in WM-ILES which could be gained by improving the
approximate near-wall velocity profile like Reichardt’s law.

Finally, we note that the computations shown were performed at a rather low Reynolds
number for which the flow is almost resolved. It remains to investigate the applicability
of the proposed approach to underresolved flows at higher Reynolds numbers.
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