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Abstract. We review and analyze derivative-based sensitivity measures, and propose
efficient numerical approach to estimate these measures. These measures are then applied
to combustion and plasma problems. Non-important parameters are successfully identified
and neglected for more complex applications.

1 INTRODUCTION

Kucherenko et al. [1], Sobol’ and Kucherenko [2, 3] introduced derivative-based sensi-
tivity indices (DSI) and have shown a link with the variance-based total sensitivity indices
(Var-TSI). Even though Var-TSI are considered superior to DSI for importance ranking
because they contain more model information (e.g. higher-order and mixed derivatives),
their cost is higher [1–3], which can restrict their use. For example, Monte Carlo (MC)
algorithms for DSI and Var-TSI have been developed and compared, and DSI convergence
can be much faster than Var-TSI, particularly in applications with little derivative vari-
ation. The approach proposed by Sudret and Mai [4] aims to estimate the DSI [2] based
on a polynomial chaos expansion. However, the extension of this for other DSI [3] seems
difficult because the additional terms in the integrand disrupt orthogonality. In follow-
ing, we review and analyze derivative-based measures for inputs of arbitrary probability
distribution and show how they can be estimated using an efficient adaptive Analysis of
Variance (ANOVA) surrogate [5, 6]. We then use them in combustion and laser-induced
breakdown applications, with 18 and 16 uncertain parameters, respectively.
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2 DERIVATIVE-BASED SENSITIVITY INDICES (DSI)

2.1 Basic definitions of DSI

The original derivative-based sensitivity indices (DSI) proposed by Kucherenko et al.
[1] for a quantity of interest f(~x), depending on uncertain parameters ~x, measure the
average of the gradient sensitivity over the input space,

µi =

∫
RN

∂f(~x)

∂xi
dF~x(~x), (1)

where F~x(~x) is the joint cumulative distribution function of ~x. A drawback of this Morris-
like measure is that the integrand in (1) can be positive and negative, which may lead
to underestimate of the parameter’s relative importance. Campolongo et al. [7] thus
proposed to use the approximated values of | ∂f

∂xi
| within the framework of the Morris

method [8]. In this spirit, Kucherenko et al. [1] redefined

µ∗i =

∫
RN

∣∣∣∣∂f(~x)

∂xi

∣∣∣∣ dF~x(~x). (2)

It is established that the Monte Carlo or Quasi Monte Carlo integration method proposed
by Kucherenko et al. [1] for DSI is more efficient and accurate than the original Morris
method. It has also been argued that the cost for numerical evaluation of DSI is many
orders of magnitude lower than that of Sobol’ variance-based total sensitivity indices
(Var-TSI) Si,T [1].

It has been noticed on particular cases that the measure µ∗i gives a similar parameter
ranking as Var-TSI. However, no proof links µ∗i and Var-TSI. To establish a link, Sobol’
and Kucherenko [2] proposed the following DSI

νi =

∫
RN

(
∂f(~x)

∂xi

)2

dF~x(~x), (3)

and show, in the case of uniformly distributed ~x ∈ [0, 1]N , that

Si,T ≤
1

π2

νi
V
, (4)

with V =
∫
RN (f −E(f))2 dF~x(~x) the total output variance. The importance of (4) is that

small νi
V

implies small Si,T, so unimportant parameters can be neglected based on relative
νi.

Using the first-order approximation of the Taylor expansion of Var-TSI, Sobol’ and
Kucherenko [3] further proposed a new DSI:

τi =
1

2

∫
R

∫
RN

(
∂f(~x)

∂xi

)2

(xi − x′i)
2

dF~x(~x) dFi(x
′
i). (5)

It can be impractical to compute (5) for a general random vector ~x, since ~x and x′i need
to be independently sampled. However, we recognize

(xi − x′i)2 = (xi − Ei)2 + (x′i − Ei)2 − 2(xi − Ei)(x′i − Ei), (6)
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where Ei =
∫
R xi dFi(xi). The last term in (6) does not contribute to the integral (5). If

we further define a sensitivity measure ζi as

ζi =

∫
RN

(
∂f(~x)

∂xi
(xi − Ei)

)2

dF~x(~x), (7)

τi in (5) can be expressed

τi =
1

2
(ζi + Viνi), (8)

with Vi =
∫
R(xi−Ei)2 dFi(xi) the variance of input parameter xi. It should be noted that

(8) does not provide any restriction to the distribution for random variables ~x; particularly,
it does not need to be uniform or normal. For linear problems, we immediately have

Si,T =
Viνi
V

=
τi
V

=
ζi
V
. (9)

Thus, Viνi, τi and ζi are good approximations of Var-TSI. We will assess these three
derivative-based measures in application examples.

We thus estimate τi by using (8) and a combination of standard Monte Carlo algorithm
with an adaptive ANOVA surrogate constructed with significantly fewer samples [5, 6, 9].

2.2 Uniformly distributed random variables

To further explain the link between Var-TSI and the three DSI measures νi, τi, and ζi,
we follow Sobol’ and Kucherenko [3] and consider uniformly distributed random variables
~x ∈ [0, 1]N . Sobol’ and Kucherenko [3] proposed and analyzed

τ
(1)
i =

∫
RN

(
∂f(~x)

∂xi

)2
1− 3xi + 3x2i

6
d~x. (10)

Since 1− 3xi + 3x2i is bounded for xi ∈ [0, 1], we have

1

24
νi ≤ τ

(1)
i ≤

1

6
νi. (11)

Considering (4) and (11), Sobol’ and Kucherenko [3] have concluded

Si,T ≤
1

π2

νi
V
≤ 24

π2

τ
(1)
i

V
. (12)

Thus, small
τ
(1)
i

V
also implies small Var-TSI.

We can similarly express (7) as

ζ
(1)
i =

∫
RN

(
∂f(~x)

∂xi

)2
1− 4xi + 4x2i

4
d~x. (13)

It should be clear that

0 ≤ ζ
(1)
i ≤

1

4
νi, (14)

so a small νi implies a small ζ
(1)
i . However, such a a theoretical link does not exist between

Var-TSI Si,T and ζ
(1)
i .
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2.3 Comparison of Monte Carlo algorithms

Though the proposed approach does not rely on uniformly distributed random vari-
ables, we can make firm estimates of cost and accuracy for this special case. By considering
a model with a linear dependence with respect to xi, Sobol’ and Kucherenko [3] compared

the costs of Monte Carlo algorithms for computing τi (5), τ
(1)
i (10) and νi (3). Let N1,

N2 and N3 be respectively the numbers of the sample sizes required to achieve a given
relative error. Sobol’ and Kucherenko [3] showed that

2 <
N1

N2

≤ 7,
12

5
<
N1

N3

≤ ∞. (15)

Denote by N4 the sample size required to obtain the same relative error for ζ
(1)
i (13). We

can similarly assert
4

3
<
N1

N4

≤ 7

4
. (16)

From (15) and (16), the sample size for τi must be larger than for ζ
(1)
i , and several times

larger than for τ
(1)
i and νi. The convergence rate of ζ

(1)
i seems inferior than τ

(1)
i for the

linear case. However, in a nonlinear case, Sobol’ and Kucherenko [3] have shown models
for which we have N1

N2
< 1. In practice, we have not noticed a significant difference in

terms of convergence between ζ
(1)
i and τ

(1)
i .

3 SURROGATE-BASED ESTIMATION OF DSI

The purpose of this work is to propose an efficient methodology to compute DSI (3) and
(5) for any type of random variables (not restricted to uniform or normal variables). While
it is always possible to estimate these integrals by crude Monte Carlo to obtain realizations
of computer simulations, this approach is however prohibitive in many challenging cases
due to computational cost, such as for the plasma-combustion systems we consider here
[6].

Using a polynomial surrogate to replace the original simulation model is an efficient
method, especially when the output statistics and sensitivity indices can be obtained by
manipulating polynomial coefficients. The analytical derivatives for a given system of
orthogonal polynomials are known to be linear combinations of at most two polynomials
of the same system [10]. Sudret and Mai [4] used the analytical derivatives to compute
νi (3) by taking advantage of the orthogonality of classical polynomials. Computing νi is
very similar to the variance computation using a Polynomial Chaos expansion. However,
this approach can be inconvenient for DSI containing additional terms in the integrand,
particularly because its advantageous properties due to orthogonality are lost.

As an alternative, a simple approach of computing (3), (5), and (7) is by standard

Monte Carlo sampling of an accurate surrogate. The derivative ∂f(~x)
∂xi

can still be obtained
analytically from the surrogate representation. The challenge becomes the construction
of meta-models from a relatively small number of full model evaluations. For this, we use
a recently proposed adaptive ANOVA method [5, 6].
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4 APPLICATION EXAMPLES

There are many and varied uncertainties in the plasma-coupled combustion systems
[6, 11], so we consider dimension reduction based on lower-dimensional (less involved and
less expensive) configurations exposing similar physical phenomena [6]. We consider two
low-dimensional models featuring multiphysics parameters here, both of which can be
used for this purpose.

4.1 Premixed flame speed — A quasi-linear case

We consider the laminar propagation velocity of hydrogen–air planar deflagrations
with initial temperature Tu = 300 K and pressure P = 1 atm. The San Diego mech-
anism [12] is used, which has 20 reversible elementary reactions among eight species,
H2,O2,H2O,H,O,OH,HO2,H2O2. It is known that the uncertainties of transport co-
efficients are as important as those of chemical-kinetic rate parameters, especially for
hydrogen combustion due to high diffusivity of light species H2,H [12–14]. Combustion
reactions are generally strongly nonlinear, and we will study them in a future work [15].
We thus only focus on transport properties as sources of uncertainty in this example.

The transport models we use are standard [16–18]. An intermolecular potential model
is needed to evaluate the collision integrals that provide transport coefficients. Following
Kee et al. [16], we use the widely employed Lennard–Jones 12–6 potential model,

U(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
,

where ε is the depth of the potential well (the maximum attractive energy), and σ the
nominal collision cross-section for low-energy collisions (the distance at which the potential
is zero). The uncertainties of ε and σ for the eight reactive species and N2 are reported
in Table 1. We assume a uniform distribution for these parameters, and the min/max are

Species εmin/k (K) εmax/k (K) σmin (×10−10 m) σmax (×10−10 m)

H2 33.300 59.700 2.827 2.968

H 37.000 145.000 2.050 2.708

O2 106.700 121.100 3.407 3.467

O 80.000 106.700 2.750 3.050

OH 79.800 809.100 2.605 3.147

HO2 107.400 365.560 3.433 4.196

H2O2 107.400 368.110 3.460 4.196

H2O 535.210 809.100 2.600 2.673

N2 71.400 98.400 3.620 3.798

Table 1: Transport coefficients uncertainties. k is the Boltzmann constant.
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taken from previously reported literature [14, 19, 20].
Figure 1 shows the mean and standard deviation of laminar flame velocity of hydrogen-

Figure 1: The variation of flame speed sL with respect to the equivalence ratio φ, and the
uncertainty of sL due to transport properties.

air planar deflagrations due to uncertainties of mixture-averaged transport model (Ta-
ble 1), compared to the flame speed obtained using nominal coefficients (codes of Kee
et al. [16, 17] incorporated in CHEMKIN1) in both mixture-averaged and multi-component
transport models. The output uncertainty of sL seems small. However, when the flame is
stretched or curved in a three-dimensional diffusion flame, uncertainty can be significant
in particular for hydrogen combustion [12]. Thus, the sensitivity analysis of transport
properties is deemed necessary to identify the influential transport parameters. Figure 2
shows the sensitivity indices. Figure 2a compares three DSI: Viνi = 1

12
νi (3), ζi (7), and τi

(5) or (8). We observe that these three measures consistently indicate the significance of
the H radical. The importance of the H radical can be anticipated because of its central
contribution to H + O2 −−⇀↽−− OH + O, which is known to be an important elementary re-
action for the description of hydrogen combustion. Its reaction rate (depending partly on
H concentration) influences fundamentally any hydrogen-containing combustion [12]. We
further plot the input–output dependence in Figure 3, where a quasi-linear dependence
can be observed between sL and σ. This quasi-linear relationship can also be inferred
based on the three very close index values of σH shown in Figure 2a. In fact, these three
DSI should be equal for a linear problem (9). Figure 2b presents the variance-based total
sensitivity indices (Var-TSI) [6], which provides identical importance information as DSI,
and further increases our overall confidence.

1A chemical kinetics software tool: http://www.reactiondesign.com/products/chemkin
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(a) (b)

Figure 2: Sensitivity analysis of laminar flame speed on transport coefficients: (a)
derivative-based sensitivity indices (DSI); (b) variance-based total sensitivity indices (Var-
TSI).

Figure 3: Flame speed sL vs. the collision diameter σ of H,O.

4.2 Laser-induced breakdown (LIB) — A non-monotone case

Munafò et al. [21] discussed the modeling of laser-induced breakdown (LIB) in gases,
which has been used as an ignition seed for supersonic plasma-coupled combustion [15].
This LIB model couples fluid motion of non-equilibrium material gas with a radiation
field, and contains a large number of uncertain parameters. Uncertainty quantification
of this LIB model in full-scale is challenging, not only because there is a large range of
time-scales (from pico- to nano-seconds for ionization and breakdown, and up to micro-
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seconds for hydrodynamics), but it also must account for the most important collisional
and radiative processes. Because of all above difficulties, it is preferable for us to first
neglect non-influential parameters by realizing a sensitivity study of the LIB model with
a zero-dimensional configuration. We do keep in mind that dimension-related phenomena
cannot be taken into account in this uncertainty analysis, for example transport properties.

The initial pressure and temperature correspond to the conditions at the outlet of the
nozzle of the ACT-II facility at the University of Illinois. Based on the experiments, we
consider a LIB in a gas mixture of H2,O2. The underlying kinetics can be modeled as a
reaction scheme (17):

(1) O2 + M −−⇀↽−− O + O + M, M = O , O+

(2) O2 + M −−⇀↽−− O + O + M, M = O2 , O2
+

(3) O + e− −−⇀↽−− O+ + e− + e−

(4) O+ + e− −−⇀↽−− O2+ + e− + e−

(5) O2 + e− −−⇀↽−− O2
+ + e− + e−

(6) O + O −−⇀↽−− O2
+ + e−

(7) O + O2
+ −−⇀↽−− O2 + O+

(8) H2 + M −−⇀↽−− H + H + M, M = H , H+

(9) H2 + M −−⇀↽−− H + H + M, M = H2

(10) H + e− −−⇀↽−− H+ + e− + e−

(11) H2 + e− −−⇀↽−− H2
+ + e− + e−

(17)

Munafò et al. [21] provide estimated rate parameters. The pre-exponential factors {Ak}
in the Arrhenius equation are known to be the main sources of uncertainty in reaction
models. We thus consider a log-uniform distribution for the pre-exponential {Ak}:

log10Ak ± 1, k = 1, · · · , 11.

Other uncertain parameters of the LIB considered in this work include the absorption
cross-section Q, the free-electron mole fraction Xe,0, the focal radius rf , the input laser
energy Elaser, and the Full Width at Half Maximum (FWHM) of the laser pulse. Readers
are referred to Munafò et al. [21] for the role of these parameters in LIB. The values and
uncertain ranges of these parameters correspond to experiments [15, 21], and are reported
in (18).

Q ∼ U(1.× 10−13, 1.× 10−12) [m2 K]

Xe,0 ∼ U(1.× 10−9, 1.× 10−8) [-]

rf ∼ U(50.× 10−6, 150.× 10−6) [m]

Elaser ∼ U(300− 300
100
, 300 + 300

100
) [m J]

FWHM ∼ U(8.−9 − 8.−9

100
, 8.−9 + 8.−9

100
) [s]

(18)

The model output of interest is the post-breakdown temperature T . The Morris-like
DSI µi and µ∗i are shown in Figure 4. The difference in magnitudes of µi and µ∗i implies
that the model output depends non-monotonically on input parameters. We do have
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Figure 4: Morris-like DSI µi and µ∗i for LIB model.

relatively small µi and µ∗i values for several parameters. However, it is unclear whether
it is safe to neglect A1,2,8. Three other DSI Viνi, ζi and τi are then reported in Figure 5.
Unlike the simpler flame speed case in Section 4.1, we now have very different values of

Figure 5: DSI Viνi, ζi and τi for LIB model.

these three DSI for each parameter, because of the non-monotonic input–output relation.
However, the relatively small DSI values of A1,2,7,8,9, Elaser and FWHM guarantee their
small Sobol’ total sensitivity indices (Var-TSI) per (12). We thus can confidently neglect
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these 7 parameters. The remaining 9 parameters would be retained for subsequent stages
of the overall UQ effort.

5 CONCLUSIONS

We have reviewed existing definitions of derivative-based sensitivity indices (DSI), in-
cluding the Morris-like measures (1) and (2), and more recently νi (3) by Sobol’ and
Kucherenko [2] and τi (5) by the same authors [3]. These measures are all functionals
depending on ∂f

∂xi
which have been suggested as importance estimators of parameter xi.

Generally speaking, DSI are less expensive to compute than variance-based total sensi-
tivity indices (Var-TSI) by Monte Carlo approaches [1–3], so they are attractive tools
for dimension reduction when the system of interest has a large number of uncertain
parameters.

We then propose an approach (8) to compute τi (5) using a combination of νi (3),
ζi (7) and the input variance Vi. Uncertain parameters are not restricted to be random
variables in the Polynomial Chaos Askey scheme. The novelty of this approach is to use
an adaptive sparse polynomial surrogate for the sampling procedure. Even though the
cost of computing Var-TSI is significantly lower using the adaptive approach [5, 6] than
Monte Carlo, it still requires, for complex problems, to build highly accurate meta-models
by using high-degree polynomials in order to estimate high-order and mixed derivatives
in the Var-TSI formulation. Such a high precision is not necessary to compute DSI, since
DSI only contain first-order derivatives and are specifically designed as screening methods
to disregard unimportant parameters. In this sense, DSI are still less expensive in practice
than Var-TSI even when using a surrogate approach.

An example of laminar flame speed with uncertain transport properties has been stud-
ied, which represents a practical case where the input–output relationship is quasi-linear.
Thus, one expects that the DSI Viνi, ζi and τi provide identical importance ranking as the
variance-based global sensitivity indices [3]. A second example of laser-induced breakdown
in plasma was also studied. Uncertain parameters include kinetics rate parameters and
other laser or radiation model parameters. The input–output relation is non-monotonic
in this second case, and we have concluded that DSI based on ( ∂f

∂xi
)2 can be more helpful

than Morris-like indices µi and µ∗i .
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