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Abstract. The present work deals with a mixed approach to the design of energy
and momentum (EM) consistent integration schemes in the field of non-linear electro-
elastodynamics

1 Introduction

The importance of electro-active polymers (EAPs) in different applications such as
actuators and sensors, soft robotics or artificial muscles require advanced simulation
techniques to prognosticate the behavior of such smart materials. Typically, these
materials are described static from the electrical standpoint and dynamic from the
mechanical standpoint. Thus, a consistent, stable and accurate time integration of
the electro-elasto-dynamical equations is fundamental for modelling purposes. In this
work we present a new approach to the design of energy-momentum (EM) consistent
algorithms inspired by the structure of polyconvex internal energy functions (see
[1]) and tailor-made for the consistent space-time discretization of EAPs. A Hu-
Washizu-type mixed variational framework with a novel cascade form of kinematic
constraints [2] along with the concept of partitioned discrete derivatives [3] leads to
a structure-preserving time integrator, which shows superior numerical stability and
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robustness (see [4], or in case of thermo-elastodynamics [5]) compared to alternative
formulations. This work can be seen as an extension of [4] to mixed formulations in
the sense of [2]. Note that the mixed framework makes possible a wide variety of
finite element formulations.

2 Continuum electro-elastodynamics

The present section provides a summary of non-linear continuum electromechanics
and the governing equations without claim of completeness (for more details consider
e.g. [6] and the references therein).

2.1 Kinematics

An EAP modeled as a deformable body B with boundary ∂B placed in its reference
configuration B0 ∈ R3 and its current configuration R3 ∋ Bt = ϕ(B0, t) is considered
within time t ∈ I = [0,T ], where T ∈ R+. The material configuration is given by
X = XAEA with material basis EA and corresponding coordinates XA, A = 1, 2, 3.
The bijective mapping ϕ ∶ B0 × I → R3 maps a material point X to its current
placement x = xa ea which is relative to the basis ea and corresponding coordinates
xa, a = 1, 2, 3. In particular the current position of X is given by the deformation
field

x = ϕ ∶= ϕ(X, t) , (1)

where deformations are prescribed by ϕ̄ ∶ ∂ϕB0 × I → R3 on a portion ∂ϕB0 ⊂ ∂B0.
The material velocity field V ∶ B0 × I → R3 at time t is given by V ∶= ϕ̇. The super-
posed dot denotes the material differentiation with respect to time. The deformation
gradient is a second-order two-point tensor field Fϕ ∶ B0 × I → R3×3 given by

Fϕ = ∇ϕ , (2)

where ∇ represents the material gradient operator, defined as ∇(●) = ∂(●)

∂X
. The

deformation gradient maps infinitesimal vectors dX placed at X ∈ B0 to the cor-
responding infinitesimal spatial line element dx placed at x ∈ Bt as dx = Fϕ dX.
An infinitesimal material area element can be computed using the cross product of
two linearly independent line elements dX1 and dX2 placed at X ∈ B0, such that
dA = dX1 × dX2. Thus the corresponding spatial area element placed at x ∈ Bt is
given by da = dx1 × dx2 = (Fϕ dX1) × (Fϕ dX2) =Hϕ dA. Here, Hϕ ∶ B0 × I → R3×3

denotes the cofactor of Fϕ, thus

Hϕ = cof(Fϕ) = 1

2
Fϕ Fϕ; (Hϕ)iI = 1

2
εijk εIJK (Fϕ)jJ (Fϕ)kK , (3)
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where εijk denotes the permutation symbol and the summation convention applies to
pairs of repeated indices. Similarly an infinitesimal material volume element placed
at X ∈ B0 can be computed employing three non-coplanar infinitesimal material line
elements dX1, dX2 and dX3 which in particular form a positive triad such that
dV = (dX1 × dX2) ⋅ dX3 > 0 .Accordingly, the corresponding infinitesimal spatial
volume element placed at x ∈ Bt yields dv = (dx1 × dx2) ⋅ dx3 = det(Fϕ) dV = Jϕ dV,
where the Jacobian determinant Jϕ ∶ B0 × I → R+ is defined by

Jϕ = det(Fϕ) = 1
6
Fϕ Fϕ ∶ Fϕ =

1

3
Hϕ ∶ Fϕ; Jϕ =

1

3
(Hϕ)iI (Fϕ)iI . (4)

In the above, the tensor cross product operator as introduced in [7] and reused in
the context of continuum mechanics by [8] has been used. Note that the expressions
of Hϕ and Jϕ lead to a great simplification of the formulation in terms of their
directional derivatives and in the design of EM schemes.

2.2 Finite strain electro-elastodynamics

The local form of balance of linear momentum can be stated as

ρ0V̇ −DIV (FϕS) − B̄ = 0; in B0;

(FϕS)N = T̄; on ∂PB0;

ϕ = ϕ̄; on ∂ϕB0,

(5)

where ρ0 ∶ B0 → R+ represents the reference mass density field, B̄ ∶ B0 × I → R3 are
prescribed body forces and T̄ ∶ ∂PB0 ×I → R3 are prescribed stresses on ∂PB0 ⊂ ∂B0.
As usual, we have the standard relationships ∂B0 = ∂PB0∪∂ϕB0 and ∂PB0∩∂ϕB0 = ∅.
Furthermore, S denotes the second Piola-Kirchhoff stress tensor and N the unit out-
ward normal vector acting on X ∈ ∂B0. The partial differential equation and bound-
ary conditions in (5) have to be supplemented with suitable initial configurations
provided by ϕ(X, 0) = ϕ0 and V(X, 0) =V0.

Based on the assumptions that magnetic and time-dependent effects can be ne-
glected, Maxwell equations reduce to the laws stated by Gauss and Faraday [6]. The
local form of Gauss law in the Lagrangian setting can be stated as

DIVD − ρe0 = 0; in B0;

D ⋅N = −ωe
0; on ∂ωB0,

(6)

using the Lagrangian electric displacement vector D ∶ B0 ×I → R3, an electric charge
per unit undeformed volume ρe0 ∶ B0 × I → R and an electric surface charge per unit
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of undeformed area ωe
0 ∶ ∂ωB0 ×I → R on ∂ωB0 ⊂ ∂B0. Furthermore, the local form of

Faraday’s law in the Lagrangian setting is given by

E = −∇φ; in B0;

φ = φ̄; on ∂φB0,
(7)

with the Lagrangian electric field vector E ∶ B0 × I → R3 and the scalar electric
potential φ ∶ B0 × I → R. Here φ̄ ∶ ∂φB0 → R are prescribed electrical potentials on
∂φB0 ⊂ ∂B0. Similar to the mechanical boundaries, we have the standard relationships
∂ωB0 ∪ ∂φB0 = ∂B0 and ∂ωB0 ∩ ∂φB0 = ∅. Eventually, suitable initial conditions for
the electrical potential are provided as φ(X, 0) = φ0.

2.3 Constitutive equations in non-linear electro-elasticity

To describe finite strain electro-elastodynamics an internal energy density per unit
undeformed volume ũ ∶ R3×3 ×R3 → R is defined by the deformation gradient and the
electrical displacement field as

ũ(Fϕ,D) = u(Cϕ,D) = U(Cϕ,Gϕ,Cϕ,D) , (8)

which is assumed to be twice continuously differentiable with respect to its argu-
ments. The frame-indifferent formulation of the internal energy density (8) has origi-
nally been introduced in [1]. Moreover, U(Cϕ,Gϕ,Cϕ,D) ∶ R3×3×R3×3×]0,+ inf[×R3 →
R is inspired by the important notion of polyconvexity where the symmetric kine-
matic quantities are the right Cauchy-Green strain tensor Cϕ ∶ B0 × I → R3×3, its
cofactor Gϕ ∶ B0 × I → R3×3 and its determinant Cϕ ∶ B0 × I → R given by

Cϕ = F
T
ϕFϕ; Gϕ = cof(Cϕ) = 1

2
Cϕ Cϕ; Cϕ = det(Cϕ) = 1

3
Cϕ ∶Gϕ . (9)

The directional derivative of the internal energy with respect to its arguments yields
the following relations

Du (Cϕ,D) [δϕ] = S ∶ 1
2
DC[δϕ]; Du (Cϕ,D) [δD] = E ⋅ δD . (10)

The directional derivative of U with respect to the deformation and electrical dis-
placement field, assume the form

DU[δϕ] = ∂CU ∶ DCϕ[δϕ] + ∂GU ∶ DGϕ[δϕ] + ∂CUDCϕ[δϕ];
DU[δD] = ∂DU ⋅ δD ,

(11)
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where the directional derivatives of the kinematic quantities are given by

DCϕ[δϕ] = (∇δϕ)T∇ϕ + (∇ϕ)T∇δϕ;
DGϕ[δϕ] = Cϕ DCϕ[δϕ];
DCϕ[δϕ] =Gϕ ∶ DCϕ[δϕ] ,

(12)

see [2]. Inserting equations (12) in (11) and comparison with (10) an expression of
the second Piola Kirchhoff stress tensor S and the electrical field vector E are given
by

S = 2∂CU + 2∂GU Cϕ + 2∂CUGϕ; E = ∂DU. (13)

Example: In this work we decomposed the internal energy into a pure mechanical
component and a coupled electro-mechanical component as u(Cϕ,D) = um(Cϕ) +
uem(Cϕ,D), see [9]. For the pure mechanical contribution we consider a material
response of a compressible Mooney-Rivlin model, given by

uMR
m (Cϕ) = UMR

m (Cϕ,Gϕ,Cϕ) = µ1

2
trCϕ+

µ2

2
trGϕ−(µ1 + 2µ2) lnC1/2

ϕ −
λ

2
(C1/2

ϕ − 1)
2
,

(14)
where µ1,µ2,λ ≥ 0 are material constants. Moreover, we focus on ideal dielectric
elastomers, where the coupled part of the internal energy is given by

uem(Cϕ,D) = Uem(Cϕ,Cϕ,D) = 1

2 εr ε0C1/2
D ⋅CϕD , (15)

with the vacuum permittivity ε0 and the relative material permittivity εr.

3 Mixed variational framwork

In this section we present a new mixed variational formulation that lays the foun-
dation for the energy-momentum consistent discretization approach developed in the
sequel. In our approach, we introduce the fields C(X), G(X) and C(X) as indepen-
dent quantities. In particular, consider the cascade form of kinematic relationships
as proposed in [2]:

C = ∇ϕT
∇ϕ; G =

1

2
C C; C =

1

3
C ∶G . (16)

The above relations can be viewed as kinematic constraints that link the strain-type
quantities C ∈ VC, G ∈ VG and C ∈ VC to the deformation ϕ ∈ Cϕ. In this connection,
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we introduce the sets

Cϕ = {ϕ ∶ B0 × I → R
3 ∣ for ϕi ∈H

1(B0), det(∇ϕ) > 0 ∀X ∈ B0, ϕ = ϕ̄ ∀X ∈ ∂ϕB0 };
VC = {C ∶ B0 × I → S ∣ for Cij ∈ L2(B0)};
VG = {G ∶ B0 × I → S ∣ for Gij ∈ L2(B0)};
VC = {C ∶ B0 × I → R ∣ for C ∈ L2(B0)} .

(17)
Here, H1 denotes the space of functions with square integrable first derivatives, L2

denotes the space of square integrable functions and S is the vector space of symmet-
ric second-order tensors. Note that the symmetry condition implies that dim(S) = 6.
Correspondingly, the constraints (16) comprise 13 independent algebraic equations.
Moreover, the spaces of admissible electrical potential and electrical displacement
field are provided by

Cφ = {φ ∶ B0 × I → R ∣ for φ ∈H1(B0), φ = φ̄ ∀X ∈ ∂φB0 };
VD = {D ∶ B0 × I → R

3 ∣ for Di ∈ L2(B0)} . (18)

Next, we define a mixed variational formulation suitable for electromechanics.
Therefore, we make use of a mixture of both, the electro-mechanical formulation in-
spired by the framework of polyconvex internal energies given in [1] and the extension
to a cascade mixed formulation as provided by [2]. The newly proposed variational
formulation relies on the following 9-field functional of the Hu-Washizu type:

Π(ϕ,Ξ,Λ,φ,D) = ∫
B0
U(C,G,C,D)dV +∫

B0
ΛC ∶ (∇ϕT

∇ϕ −C)dV

+∫
B0
ΛG ∶ (1

2
C C −G)dV

+∫
B0
ΛC (1

3
C ∶G −C)dV

+∫
B0
D ⋅∇φdV +Πext(ϕ,φ) ,

(19)

where the abbreviations of the independent fields Ξ = (C,G,C) andΛ = (ΛC,ΛG,ΛC)
have been introduced for convenience of notation. As it can be observed from the vari-
ational functional (19), the three kinematic constraints (16) are enforced by means
of Lagrange multipliers ΛC ∈ VC, ΛG ∈ VG, and ΛC ∈ VC . The external potential can
be split into a mechanical and electrical contribution Πext(ϕ,φ) = Πm

ext (ϕ)+Πe
ext (φ)

defined as

Πm
ext (ϕ) = −∫

B
B̄⋅ϕdV −∫

∂PB0
T̄⋅ϕdA; Πe

ext (φ) = ∫
B0
ρe0φdV +∫

∂ωB0
ωe
0ϕdA. (20)
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Note that ∫B0D ⋅∇φdV +Πe
ext (φ) in (19) defines the Gauss law (6) as an additional

constraint, enforced by the electrical potential φ.
Imposing the stationary conditions on the functional (19) we obtain the Euler-

Lagrange equations. Stationarity with respect to the displacements ϕ yields

DϕΠ[δϕ] = ∫
B0
ΛC
∶ ((∇δϕ)T∇ϕ + (∇ϕ)T∇δϕ)dV +Πm

ext (δϕ) = 0 , (21)

which represent the weak form of the balance of linear momentum. Stationarity with
respect to the electrical potential φ and the electrical displacement field D yields

DφΠ[δφ] = ∫
B0
D ⋅∇δφdV +Πe

ext (δφ) = 0;

DDΠ[δD] = ∫
B0
δD ⋅ (∂DU +∇φ) dV = 0 ,

(22)

which represent the weak form of the Gauss’s law and Faraday’s law, respectively.
For the stationarity conditions with respect to the kinematic fields Ξ we obtain

DCΠ[δC]= ∫
B0
δC ∶ (∂CU −ΛC +ΛG C + 1

3 Λ
C G)dV = 0;

DGΠ[δG]= ∫
B0
δG ∶ (∂GU −ΛG +

1
3Λ

C C)dV = 0;

DCΠ[δC]= ∫
B0
δC (∂CU −ΛC)dV = 0 .

(23)

Finally, stationary with respect to the Lagrange multipliers Λ yield

D
Λ

CΠ[δΛC]= ∫
B0
δΛC ∶ ((∇ϕ)T∇ϕ −C)dV = 0;

D
Λ

GΠ[δΛG]= ∫
B0
δΛG ∶ (12 C C −G)dV = 0;

DΛCΠ[δΛC]= ∫
B0
δΛC (13G ∶ C −C)dV = 0 .

(24)

The above equations have to hold for arbitrary δϕ ∈ Vϕ, δφ ∈ Vφ and arbitrary
δC ∈ VC, δG ∈ VG, δC ∈ VC , δΛC ∈ VC, δΛG ∈ VG, δΛC ∈ VC and δD ∈ VD. The
spaces of admissible variations of ϕ and φ are defined as

Vϕ = {δϕ ∶ B0 → R
3 ∣ for δϕi ∈H

1(B0), δϕ = 0 ∀X ∈ ∂ϕB0 };
Vφ = {δφ ∶ B0 → R ∣ for δφ ∈H1(B0), δφ = 0 ∀ X ∈ ∂φB0 } . (25)

Note that (24) recover the kinematic constraints given in (16), while (23) yields the
Lagrange multipliers.
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3.1 Extension to dynamics

Next we deal with the extension of the mixed formulation introduced above to
the elasto-dynamic regime. A field denoted by (●)t is defined at time t ∈ I (e.g. the
motion of the continuum body is described by ϕt ∈ Cϕ, where x(t) = ϕt(X) charac-
terizes the position of the material point X ∈ B0). Based on the local form of balance
of linear momentum given in (5), we extend (21) to elastodynamics. Accordingly,
(21) is replaced by

∫
B0

δV ⋅ (ϕ̇t −Vt)ρ0 dV = 0;

∫
B0
(δϕ ⋅ ρ0 V̇t +Λ

C

t ∶ ((∇δϕ)T∇ϕt + (∇ϕt)T∇δϕ)dV +Πext
m (δϕ) = 0 ,

(26)

while the variational equations (22)-(24) remain the same. The variational equations
have to hold for arbitrary {δϕ, δV, δC, δG, δC, δΛC, δΛG, δΛC , δφ, δD} ∈ Vϕ × Vϕ ×
VC ×VG ×VC ×VC ×VG ×VC × Vφ ×VD and be supplemented by prescribed initial
values ϕ0 ∈ Vϕ, V0 ∈ Vϕ and φ0 ∈ Vφ at time t = 0. Consistent initial values for the
mixed strain fields, (C0,G0,C0), and the electrical displacement vector D0 can be
calculated with the use of (22)1 and (23).

4 Discretization in time

Next we deal with the structure-preserving discretization in time of the mixed
variational formulation presented in the previous section. We focus on a represen-
tative time interval [tn, tn+1] with corresponding time-step size ∆t = tn+1 − tn. The
discrete approximations at times tn and tn+1 of the continuous variable (●)t will be
denoted by (●)n and (●)n+1, respectively. The average value of (●)t in the time inter-
val [tn, tn+1] is denoted by (●)n+ 1

2

= 1
2
((●)n+(●)n+1). Assume that the state variables

(ϕn,Vn,φn) ∈ Cϕ × Vϕ × Cφ along with consistent strain variables (Cn,Gn,Cn) and
the electrical displacement field Dn are given. Now the semi-discrete version of the
dynamical extended variational equations (26) along with (22)-(24), is introduced as

∫
B0
δV ⋅ 1

∆t
(ϕn+1 −ϕn)ρ0 dV = ∫

B0
δV ⋅Vn+ 1

2

ρ0 dV ;

∫
B0
δϕ ⋅ ρ0∆t

(Vn+1 −Vn) +ΛC

n+1 ∶ ((∇δϕ)T∇ϕn+ 1

2

+ (∇ϕn+ 1

2

)T∇δϕ)dV = −Πm
ext(δϕ)

n+ 1

2

∣;

∫
B0
Dn+ 1

2

⋅∇δφdV = −Πe
ext (δφ) ∣

n+ 1

2

;

∫
B0
δD ⋅ (DDU +∇φn+ 1

2

) dV = 0 ,
(27)
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for arbitrary {δV, δϕ, δφ, δD} ∈ Vϕ × Vϕ × Vφ ×VD, together with

∫
B0
δC ∶ (DCU −Λ

C

n+1 +Λ
G

n+1 Cn+ 1

2

+
1
3 Λ

C
n+1Gn+ 1

2

)dV = 0;

∫
B0
δG ∶ (DGU −Λ

G

n+1 +
1
3Λ

C
n+1Cn+ 1

2

)dV = 0;

∫
B0
δC (DCU −Λ

C
n+1)dV = 0;

∫
B0

δΛC
∶ ((∇ϕn+1)T∇ϕn+1 −Cn+1)dV = 0;

∫
B0

δΛG
∶ (12 Cn+1 Cn+1 −Gn+1)dV = 0;

∫
B0

δΛC (1
3Gn+1 ∶Cn+1 −Cn+1)dV = 0 ,

(28)

for arbitrary {δC, δG, δC, δΛC, δΛG, δΛC} ∈ VC ×VG ×VC ×VC ×VG ×VC . More-
over, in (27)4 and (28)1−3, the time-discrete versions of the partial derivatives of the
internal energy (∂CU,∂GU,∂CU,∂DU) are replaced by (DCU,DGU,DCU,DDU). In
particular, we assume that (DCU,DGU,DCU,DDU) are partitioned discrete deriva-
tives in the sense of [3] for the internal energy density U(C,G,C,D). For the
specific definition of the partitioned discrete derivative in the context of the under-
lying electro-elastodynamic problem, see [4]. Accordingly, the following property
is assumed to be satisfied by definition of the discrete derivatives for the internal
energy:

U(Cn+1,Gn+1,Cn+1,Dn+1) −U(Cn,Gn,Cn,Dn)
= DCU ∶ (Cn+1 −Cn) +DGU ∶ (Gn+1 −Gn) +DCU(Cn+1 −Cn) +DDU ⋅ (Dn+1 −Dn) .

(29)
This property yields an energy consistent time integration scheme for the proposed
electro-mechanical system, see [2, 4].

5 Discretization in space

For the discretisation in space we apply standard isoparametric finite elements
based on finite-dimensional approximations {ϕh

t ,V
h
t ,φ

h
t ,D

h
t } ∈ Chϕ × Vhϕ × Chφ × Vh

D ⊂Cϕ × Vϕ × Cφ ×VD of the form

Chϕ = {ϕt ∈ Cϕ ∣ ϕh
t ∣
Be
0

=
nnode

∑
a=1

Nϕ
a ϕ

a
t }; VhV = {ϕt ∈ Vϕ ∣Vh

t ∣
Be
0

=
nnode

∑
a=1

NV
a Va

t }

Chφ = {φt ∈ Cφ ∣ φh
t ∣
Be
0

=
nnode

∑
a=1

Nφ
a φa

t }; Vh
D = {Dt ∈ VD ∣Dh

t ∣
Be
0

=
nnode

∑
b=1

MD
b Db

t } .
(30)

9
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Here, N●a ∶ B0 → R with a = 1, ...,nnode denotes the nodal shape functions and (●)at
are the respective nodal values at time t. Here, nnode denotes the total number of
nodes in the finite element mesh. Moreover, the strain variables Ch

t ,G
h
t ,C

h
t and the

Lagrange multipliers ΛC

t

h
,ΛG

t

h
,ΛC

t
h
are based on approximations VC ,VG,VC of the

form

V
h
A
= {At ∈ VA ∣Ah

t ∣
Be
0

=
nnode

∑
b=1

MA
b Ab

t, (Ab
t =A

b
t

T) } . (31)

whereA stands for the second-order tensors C, G, ΛC, ΛG or scalars C, ΛC . Accord-
ingly, the present sample application relies on uniform element-wise approximations
for the strains, the Lagrange multipliers and the electrical displacement field making
use of the shape functions M●

b ∶ B0 → R, with b = 1, ...,nnode. The standard (Bubnov)
Galerkin approach relies on analogous approximations for the corresponding varia-
tions. Since no inter-element continuity is required for the mixed approximations
(related to the shape functions M●

b ), the additional unknowns can be eliminated on
element level, see [1, 2]. Moreover, the proposed discretization in space does not
affect the EM scheme and inherits the fundamental balance laws.

6 Numerical example

The goal of this numerical example, depicted in Fig. 1, is to verify the conservation
properties of the newly proposed EM method.

e1
e2

e3

0.08m

0.04m

0.36mωe
0

−ωe
0

φ = 0

ω

Figure 1: Rotating cross-shaped body
with electrical boundary conditions

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

−2 0 2

×106

Figure 2: Snapshots with electrical potential distri-
bution at t = {0, 0.2, 0.3, 0.4, 0.6, 3.2, 3.5, 3.7, 4} s

We use the internal energy given in (14)-(15) where the material parameters are
µ1 = 5 × 104Pa , µ2 = 1 × 105Pa, λ = 5 × 105Pa, ε0 = 8.854 × 10−12A2 s4 kg−1m−3,
εr = 4 with reference density of ρ0 = 1000kgm−3. There are no mechanical Dirichlet
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boundary conditions and the initial velocity is assumed to be V0 = ω × X, with
ω = [0, 0, 4]T s−1. On the blue electrode, a constant value of φ = 0V is applied. On
the purple electrode a time dependent electrical surface charge ωe

0 is applied, where
the time dependent function of ωe

0 is given by ωe
0 = 5 ⋅ 10

−3 ⋅ sin(0.5π0.4 s t) for t ≤ 0.4 s,
ωe
0 = 5 ⋅ 10

−3 for 0.4 s < t ≤ 3.0 s, ωe
0 = 5 ⋅ 10

−3 ⋅ cos( 0.5π
3.4 s−3.0 s (t − 3 s)) for 3.0 s < t ≤ 3.4 s

and ωe
0 = 0 for t > 3.4 s. Note that the cross-shaped body has the same boundary

conditions and dimensions in each wing. For the spatial discretization, we use a total
of 672 hexahedral finite elements with continuous quadratic (20-nodes Serendepity
type interpolation) Ansatz for ϕh

t ,V
h
t ,φ

h
t and a discontinuous linear (8-node) Ansatz

for the other fields. The time-step size is ∆t = 0.01 s and the simulation time T = 10 s.
The total angular momentum is defined by J = ∫B0 ϕ × ρ0V dV and the total

Hamiltonian is given by H = ∫B0 1
2ρ0V ⋅V dV +∫B0 U (C,G,C,D) dV +∫B0 D ⋅∇φdV +

Πext (ϕ,φ). It can be easily verified in an analytically way, that the proposed scheme
consistently approximates the discrete versions of J and H, respectively (see [2, 4]).
As expected, the EM scheme is capable to correctly approximate these quantities
in the numerical examples as well, see Fig. 3 and Fig. 4. It is well-known that
standard time-stepping schemes such that the mid-point (MP) rule show a tendency
to numerical instabilities in nonlinear applications. The unstable behavior of the mid-
point rule leads to a termination of the simulation after about 5 seconds. In contrast
to that, the present EM scheme is numerically stable. Finally, several snapshots
of the deformed cross-shaped body are plotted in Fig. 2 where the EM consistent
integrator has been used.
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Figure 3: Time evolution of H.
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Figure 4: Time evolution of ∣∣J∣∣.

7 Conclusions

A new consistent energy-momentum one-step time integrator scheme is presented
in the context of nonlinear electro-elastodynamics. The proposed schemes shows the
typical advantages for the structure-preserving discretization in time. Furthermore,
the mixed formulation offers several options for the discretization in space.
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