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Abstract. As the mean time between failures on the future high-performance comput-
ing platforms is expected to decrease to just a few minutes, the development of “smart”,
property-preserving checkpointing schemes becomes imperative to avoid dramatic de-
creases in application utilization. In this paper we formulate a generic optimization-based
approach for fault-tolerant computations, which separates property preservation from the
compression and recovery stages of the checkpointing processes. We then specialize the
approach to obtain a fault recovery procedure for a model scalar transport equation, which
preserves local solution bounds and total mass. Numerical examples showing solution re-
covery from a corrupted application state for three different failure modes illustrate the
potential of the approach.

1 INTRODUCTION

Today, the mean time between failures on the leading petascale supercomputers is
measured in hours. For example, IBM’s design target for the overall mean time between
failures for a 96-rack, 98,304-node Blue Gene/Q system is 72 hours [4]. The mean time
between the occurrences of double-bit errors in graphics processing units (GPUs) on the
Titan supercomputer is 160 hours [12], while the overall mean time between GPU failures
is approximately 40 hours [13]. As high-performance computing (HPC) moves toward the
exascale, the mean time between failures is projected to shrink to a few minutes [3, 5],
while only small speed improvements are expected in the disk-based checkpointing of the
full application state. As a result, the lack of “smart” fault tolerance technologies could
become one of the critical stumbling blocks on the path to exascale. In particular, it
could drive application utilization, a measure of useful work performed by HPC systems,
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to essentially zero. Schroeder et. al. [11] argue that taking faster checkpoints is the most
effective and possibly the only viable strategy for sustained application utilization at
extreme scales, recommending that any application capable of compressing its checkpoint
size should pursue this path.

In this paper we present a new, optimization-based (OB) framework for efficient,
property-preserving checkpoint compression and recovery algorithms for fault-tolerant
simulations on HPC platforms. Our approach separates the preservation of the desired
physical properties in the simulated solution from the data compression and recovery
processes. For example, for compression one can minimize the misfit between “mea-
surements” of the application state and a sparse representation of that state, subject to
constraints that include hardware considerations, such as the available checkpoint space,
as well as some judiciously chosen physical properties. In our model problem involving
scalar transport, the physical properties of interest are, e.g., local extrema, mass in each
physical subdomain and locations of discontinuities. For the OB property-preserving re-
covery, a similar optimization process can be applied, where the misfit function may be
based on the best available (corrupted) application state, and where the checkpointed
(compressed) data and the desired physical properties are used to formulate constraints.
Therefore, our OB approach motivates a new family of lossy, property-preserving compres-
sion and recovery algorithms, which enable a graceful degradation of simulation accuracy
in the presence of hardware faults.

For both compression and recovery, a representation of the system state is sought, which
minimizes the distance to a best available target that may not be property preserving but
is believed to be accurate, subject to constraints enforcing the desired physical properties
and other available data. For the remainder of the paper, we focus primarily on the
recovery process, and note that similar formulations can be developed for compression. In
a nutshell, given uD ∈ Rd, likely a corrupted or low-resolution snapshot of the application
state u ∈ Rn, a nonlinear state-to-snapshot map C : Rn → Rd, a measure of state-to-
snapshot misfit J : Rd → R, and constraints L(u), where the nonlinear operator L :
Rn → Rm enforces discrete physical invariants and/or inequalities (generically labeled
‘properties’), we recover the application state by solving the optimization problem

minimize
u∈Rn

J (C(u)− uD) subject to L(u) ≥ 0 . (1)

We note that u need not denote the full application state; where appropriate, local or
partial recovery may be used; for instance, in [7] Heroux discusses a local failure local
recovery paradigm for exascale applications. Alternatively, one may formally incorporate
the known values of u into the constraint values L(u). To shed some more light on our
approach we proceed to dissect formulation (1):

• State snaphot uD. The target uD may be the available corrupted application state or
a compressed representation thereof. For the latter, the use of conventional lossless
and lossy compression, including file and image compression [8], and new ideas
from super-resolution imaging [6] are fully compatible with (1). A more powerful
approach is to solve a separate optimization problem for lossy compression, similar
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to (1), where we match the available state data to a sparse state representation or a
reduced-basis model, subject to physical constraints. It is also possible to combine
the two approaches and develop broadly applicable algorithms for constrained data
compression. This subject will be studied in a future publication. In the following
sections, we focus on the case where uD is the available corrupted (uncompressed)
application state.

• Constraints L(u). The definition of the constraints requires an in-depth analysis of
the application. In general, we must incorporate the available checkpoint data and
additional application-dependent physical properties. In the context of conservation
laws governing transport, the latter may be local extrema, mass/momentum balance
and locations of discontinuities.

• Objective function J (C(u)− uD). The choice of the objective function is primarily
governed by numerical accuracy considerations; stability can be imparted through
the constraints. A very important task is to analyze the accuracy of a numerical
scheme subject to lossy compression and recovery. This subject will be studied in a
future publication.

The remainder of the paper is organized as follows. In Section 2 we define a model problem
motivated by scalar transport. The problem definition is accompanied by a discussion of
the physical properties that are to be preserved by our compression/recovery schemes. In
Section 3 we apply the abstract OB formulation (1) to the scalar transport problem. The
numerical solution of the resulting optimization problem is showcased in the context of
three simulated failure scenarios. In Section 4 we discuss our conclusions and point to
some future work.

2 MODEL PROBLEM

We assume that the computational domain Ω is a simply-connected, bounded open
domain in R2 or R3, with a Lipschitz-continuous boundary Γ = ∂Ω, and consider the
scalar transport equation

∂ρ

∂t
+∇ · (ρv) = 0 on Ω× [0, T ],

ρ(x, t) = ρb(x, t) on ΓI × [0, T ],

ρ(x, 0) = ρ0(x) on Ω.

(2)

In this equation v(x) is a solenoidal velocity field, ρ = ρ(x, t) is a non-negative density
function defined on Ω × [0, T ], T > 0 is the final time, ρ0(x) ≥ 0 is a piecewise C0

initial density distribution, and ρb(x, t) is a given inflow boundary data. We assume
that the domain Ω and the velocity field are such that the inflow boundary ΓI = {x ∈
Γ |n(x) · v(x) < 0} ⊂ Γ is non-empty. The complement of ΓI is the outflow boundary
ΓO = Γ \ ΓI.

Equation (2) provides a simple, yet sufficiently representative setting for our purposes,
which will allow us to present the key ideas of optimization-based (OB) compression and
recovery without unnecessary technical distractions. In particular, we note that solutions
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of (2) have constant upper and lower bounds in any given Lagrangian volume V (t), that
is for all 0 < t ≤ T there holds

ρVmin ≤ ρ(x, t) ≤ ρVmax ∀x ∈ V (t) , (3)

where
ρVmin = min

x∈V (0)
ρ0(x) and ρVmax = max

x∈V (0)
ρ0(x) .

The local solution bounds (3) define the first physical property that we shall aim to preserve
in the compression/recovery process. The second physical property will be the total mass
preservation in the given region Ω, i.e., we shall restrict attention to solutions of (2) for
which

d

dt

∫
Ω

ρ(x, t) dx = 0 . (4)

2.1 Discretization of the model problem

In this section we briefly discus the finite element discretization of (2) and define
discrete analogues of the two physical properties, i.e., the local solution bounds (3) and
the total mass preservation (4).

Let Ωh be a shape-regular partition of Ω into finite elements Kn with an average size h.
We discretize (2) in space using the classical SUPG scheme [2] implemented with standard
linear, bilinear or trilinear C0 nodal finite elements defined with respect to the mesh Ωh.
We discretize the resulting semi-discrete equations in time using the θ scheme. Thus, the
fully discrete problem is given by the following system of linear algebraic equations

(M −∆tθK)ρk+1 = (M + ∆t(1− θ)K)ρk k = 1, ..., N, (5)

where ρk ∈ Rn is a vector of nodal solution coefficients, M ∈ Rn×n is an SUPG-stabilized
mass matrix, K ∈ Rn×n is an SUPG-stabilized advection matrix, ∆t is the time step, N
is the total number of time steps and ρ0 ∈ Rn is a vector of nodal coefficients for the
initial data.

Discrete physical properties. To define a discrete analogue of (3) for the fully discrete
equation (5) we note that for the finite element spaces used in this work local bounds on the
nodal coefficients imply pointwise solution bounds on the finite element approximation.
As a result, an appropriate discrete version of (3) is given by

(ρk+1
min )i ≤ ρk+1

i ≤ (ρk+1
max)i , (6)

where ρk+1
min ∈ Rn and ρk+1

max ∈ Rn are physically motivated lower and upper bounds for the
nodal values at tk+1. Here we define these bounds according to

(ρk+1
min )i = min

j∈Ñ (xi)
(ρk)j, and (ρk+1

max)i = max
j∈Ñ (xi)

(ρk)j, (7)

where Ñ (xi) is the set of nearest neighbor nodes for a given mesh node xi. This definition
guarantees that the finite element solution satisfies a discrete maximum principle [9]. We
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also note that (6) automatically implies the global solution bound 0 ≤ ρk ≤ 1, ∀k, where
we have assumed 0 ≤ ρ0 ≤ 1.

A discrete version of the second property (4) is straightforward. Given a discrete
solution ρk at t = tk we require that the solution ρk+1 at the next time step has the same
total mass, i.e.,

1TM̃ρk+1 = 1TM̃ρk k = 0, 1, . . . N, (8)

where M̃ ∈ Rn×n is a consistent (unstabilized) mass matrix, and 1 ∈ Rn is a vector of
ones. This property is equivalent to a single linear equality constraint given by

1T (M̃ρk) = m,∀k , where mis the total initial mass, i.e., m = 1T (M̃ρ0) . (9)

3 FAULT-TOLERANT SCALAR TRANSPORT

In this section we specialize the abstract optimization problem (1) to the discretization
(5) of the model equations (2). We briefly discuss the compression and recovery schemes.

Compression. In this example we do not compress the application state directly. In-
stead, to reduce the checkpoint size we rely on a compression of the vectors of local
bounds, used to define the constraints for the recovery scheme. It turns out that in this
application a very coarse representation of local bounds is sufficient for robust property-
preserving recovery. Specifically, to perform compression we downsample the local bounds
uniformly on a mesh with 16 times fewer nodes, and linearly interpolate the values to ob-
tain ρk

min and ρk
max during the recovery process. We note that in this case the property

0 ≤ ρk ≤ 1 still holds. Therefore, this is an example —albeit a very simple one— of
property-preserving compression.

Recovery. The corruption of the application state ρk is assumed to happen through
various scenarios, specified later. We denote the corrupted application snapshot by ρk

D ∈
Rn. In this case the state-to-snapshot map C introduced in (1) is the identity, and n = d.
We define the objective function as the square of the `2-norm misfit between the desired
‘reconstruction’ ρk and the snapshot ρk

D. The property-preserving recovery problem for
scalar transport, labeled FPR-T, takes the following form:

minimize
ρk∈Rn

‖ρk − ρk
D‖2

2 subject to ρk
min ≤ ρk ≤ ρk

max and 1T (M̃ρk) = m. (10)

We recognize this problem as a singly linearly constrained quadratic program with simple
bounds, and use the optimization algorithm developed in [1] for its solution. This algo-
rithm is extremely efficient, amounting to purely local median computations followed by
a few dot products. We also note the in the case of local failure we need not consider the
full application state ρk ∈ Rn, but may instead solve smaller, local optimization problems.

To demonstrate the power of property-preserving recovery for lossy scalar transport we
conduct numerical experiments based on three failure models: large yet infrequent failure;
small yet frequent failure; and large and frequent failure. The failure models are described
later. We take conventional SUPG with the forward-Euler time integration, i.e., (5) with
θ = 0 as our baseline. This scheme is not designed to handle failure, nor does it preserve
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the local solution bounds (6). Thus, we expect the SUPG state obtained through (5) to
be unphysical; see Figure 1.

To define the second scheme we augment SUPG with FPR-T. Specifically, at every
time step we run conventional SUPG, obtain a (corrupted) state, and use this state as
the target snapshot ρk

D in (10). To recover the property-preserving state we solve (10).
For brevity we overload the notation and call this hybrid scheme FPR-T. To summarize,
the schemes are:

1. SUPG: Compute ρk by solving Mρk = (∆tK +M)ρk−1.

2. FPR-T: Compute ρk by solving Mρk = (∆tK +M)ρk−1. Set ρk
D = ρk. Solve (10)

for the new ρk.

The underlying numerical example is the solid body rotation defined by LeVeque [10,
p.650]. Here an initial ‘combo’ density, comprising a smooth hump, a cone and a slotted
cylinder, see Figure 1, is transported by the rotational velocity field v = (−x2 +1/2, x1−
1/2). We report results after one full revolution.

Figure 1: Left to right: (1) The ‘combo’ initial data for the solid body rotation tests [10]. (2) The
plane view of the initial data. The initial physical bounds are Max=1.00 and Min=0.00. Fixed color
scale. (3) SUPG solution after one full rotation. SUPG solution violates physical bounds (dark areas);
Max=1.83, Min=−0.78.

Large yet infrequent failure. We simulate the failure of a system where an entire
group of spatially linked compute nodes is the weak link. The application state is cor-
rupted three times in the course of the simulation, at iterations bN/4c, bN/2c and b3N/4c,
in the same diamond-shaped region centered at (0.3, 0.4). The value of the corrupted ap-
plication state ρk

D is set to −1 in the failed compute region, where no additional state data
is stored. As described above, we use a coarse representation of the local bounds, and
mass conservation, to complete the FPR-T formulation. The results using conventional
SUPG where no recovery is attempted and using FPR-T are shown in Figure 2. Con-
ventional SUPG clearly exhibits imprinting of the failed compute region, while FPR-T
appears robust to failure. We note that the effective checkpoint compression, as studied
by Ibtesham et. al. [8] (with 0% denoting no compression), is 87.5%. This is due to (i)
local recovery and (ii) storing only the coarse bounds and total mass, i.e., one eighth of
the total state information and a single scalar, respectively.

6



Denis Ridzal and Pavel Bochev

Figure 2: Large-yet-infrequent system failure for SUPG (left) and our FPR-T formulation (right). SUPG
exhibits imprinting of the failed region; FPR-T is robust to failure with 87.5% compression ratio.

Small yet frequent failure. Here we study the effect of random node failures. As
for the case of large yet infrequent failures, to define the constraints we use a coarse
representation of the local bounds, and mass conservation. The value of the corrupted
application state ρk

D is set to −1 at a randomly selected compute node at every tenth
forward-Euler iteration. It is no surprise that conventional SUPG cannot cope with
random node failure, see Figure 3. On the other hand, our FPR-T scheme, applied locally,
reconstructs the application state almost exactly. Again, taking into account the added
storage, the effective checkpoint compression is 87.5%. Finally, we note that for both
failure cases (large-yet-infrequent and small-yet-frequent) we observed an L2 convergence
rate of the error between the initial data and the final state of approximately 1/4, on
the mesh sequence {64×64, 128×128, 256×256}. This is consistent with the convergence
rate (without faults) of a related optimization-based transport algorithm [1], which uses
formulation similar to (10) but with target ρk

D given by a cell-centered finite volume
approximation of the density.

Figure 3: Small-yet-frequent system failure for SUPG (left) and our FPR-T formulation (right). SUPG
cannot cope with random data corruption; FPR-T is robust to failure.
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Large and frequent failure. This case is very similar to the first, except for an in-
creased frequency of failure. The application state is corrupted at every 200th iteration,
amounting to 63 large-scale failures. As there are no recovery mechanisms in conven-

Figure 4: Large-and-frequent system failure for SUPG (left) and our FPR-T formulation (right). SUPG
exhibits a corrupted annulus; FPR-T fairs significantly better.

tional SUPG, an entire annulus is corrupted, see Figure 4. Our FPR-T scheme clearly
does not fair as well as before, however, that is expected. This points to the need to
develop alternate definitions of application data ρk

D, where some state information (and
not simply bounds) are incorporated into the FPR-T formulation. Nonetheless, we ob-

serve that at final time 0 ≤ ρN ≤ 1 and |1T (M̃ρN)− 1T (M̃ρ0)| ≈ 10−14, i.e., the global
bounds and the total mass are conserved! Moreover, we cannot emphasize enough that for
all three examples the overhead of solving the property-preserving recovery problem (10)
amounts to only a few percent of the total computational time. Lastly, it is evident that
the proposed formulation can be used not only for physics-based checkpointing but as
a fault-tolerant transport scheme in its own right, with the added benefits of mass and
monotonicity preservation.

4 CONCLUSIONS

We have formulated a new optimization-based approach for “smart” compression and
recovery for fault-tolerant high-performance computing. Our approach implements a
divide-and-conquer strategy, which separates compression and recovery from the preser-
vation of the desired physical properties. This allows one to combine the approach with
virtually any available compression and/or recovery scheme. In this paper we have fo-
cused on demonstrating the approach by using it to define a fault recovery procedure
for scalar transport, which preserves local solution bounds and total mass. Numerical
tests simulating different failure modes demonstrate the ability of the optimization-based
approach to recover a reasonable application state even under severe failure, while al-
ways preserving the desired physical properties. In future publications we will analyze
the numerical accuracy of the optimization-based approach for specific compression and
recovery schemes. Additionally, we plan to explore a variety of new property-preserving
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compression algorithms.
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[9] D. Kuzmin, R. Löhner, and S. Turek, editors. Flux-Corrected Transport. Principles,
Algorithms and Applications. Springer Verlag, Berlin, Heidelberg, 2005.

9



Denis Ridzal and Pavel Bochev

[10] Randall J. LeVeque. High-resolution conservative algorithms for advection in incom-
pressible flow. SIAM Journal on Numerical Analysis, 33(2):627–665, 1996.

[11] B. Schroeder and G.A. Gibson. Understanding failures in petascale computers. Jour-
nal of Physics: Conference Series, 78:012022, 2007.

[12] Devesh Tiwari, Saurabh Gupta, George Gallarno, Jim Rogers, and Don Maxwell.
Reliability Lessons Learned from GPU Experience with the Titan Supercomputer
at Oak Ridge Leadership Computing Facility. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC
’15, pages 38:1–38:12, New York, NY, USA, 2015. ACM.

[13] Devesh Tiwari, Saurabh Gupta, James H. Rogers, Don Maxwell, Paolo Rech, Sud-
harshan S. Vazhkudai, Daniel A. G. de Oliveira, Dave Londo, Nathan DeBardeleben,
Philippe Olivier Alexandre Navaux, Luigi Carro, and Arthur S. Bland. Understand-
ing GPU errors on large-scale HPC systems and the implications for system design
and operation. 2015 IEEE 21st International Symposium on High Performance Com-
puter Architecture (HPCA), pages 331–342, 2015.

10


