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Abstract. The study of complex physical systems is often based on computationally
intensive high-fidelity simulations. To build confidence and improve the prediction accu-
racy of such simulations, the impact of uncertainties on the quantities of interest must
be measured. This, however, requires a computational budget that is typically a large
multiple of the cost of a single calculation, and thus may become unfeasible for expen-
sive simulation models. In this regard, multi-fidelity methods have become increasingly
popular in the past decade as acceleration strategies to reduce the computational cost.
These approaches are based on a hierarchy of models and attempt to leverage the relation
between high- and low-fidelity levels to obtain a more accurate statistical estimator with-
out requiring a large number of additional high-fidelity calculations. In this work, three
different multi-fidelity strategies are assessed for the numerical simulation of irradiated
particle-laden turbulent flow relevant to solar receiver systems.

1 INTRODUCTION

The number of uncertainties involved in the study of complex, multiphysics turbulent
flow is typically large due to (i) the modeling assumptions required to mathematically
describe the different physics and their couplings, i.e., epistemic uncertainty, and (ii)
the aleatoric incertitude resulting, for instance, from the lack of detailed evidence re-
garding the initial and boundary conditions. Therefore, numerical analyses based on a
single deterministic realization for a particular set of input parameters cannot be deemed
predictive. A solution to this problem is to consider the system under study stochastic
and analyze the relation between input and output probability distributions by means
of efficient statistical methods. The field of uncertainty quantification (UQ) applied to
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computational sciences and engineering has remarkably grown over the last decades [1],
and it is now extensively accepted that the potential of estimating and minimizing un-
certainties, in combination with numerical verification and physics validation (V&V), is
crucial for augmenting the confidence in the numerical predictions. Within this scope,
the goal of the Predictive Science Academic Alliance Program (PSAAP) II at Stanford
University [2] is to perform large-scale, predictive simulations of particle-laden turbulent
flow in a radiation environment based on the configuration and operating conditions of
an in-house experimental apparatus.

The investigation of thermal radiation interacting with particle-laden turbulent flow
is of great importance in diverse scientific and engineering disciplines. For instance,
phenomena reminiscent of irradiated particle-laden turbulence are ubiquitous in the fields
of earth and combustion sciences, like for example, the impact of preferential concentration
on the rate of droplet coalescence and evaporation in atmospheric clouds [3], and the fluid
mechanics of reacting boundary layers and plumes [4]. Of particular interest to this work
is the study of these physical processes in the context of volumetric particle-based solar
receivers for energy harvesting [5].

Inertial particles in homogeneous isotropic turbulence (HIT) may exhibit complex inter-
actions between the carrier and dispersed phases as a result of preferential concentration
and turbulence modulation [6]. The former is the process by which heavy particles are
expelled from intense vortical structures and concentrate in regions of the flow dominated
by strain. This phenomenon is characterized by the Stokes number St = τp/τf , defined as
the ratio between particle relaxation, τp, and fluid, τf , time scales, and it is accentuated
for Stη ≈ 1 when τf is taken as the Kolmogorov time scale τη. The latter corresponds to
the modification of fluid flow characteristics in the near-field region of particle clusters as a
result of two-way coupling effects. The addition of no-slip boundaries further complicates
the problem as turbophoresis [7], i.e., tendency of particles to migrate towards regions
of decreasing turbulence intensity, acts as a dominant mechanism for accumulating par-
ticles at the walls. These three mechanisms are well known and have been extensively
studied by means of experimental and numerical approaches over the past decades, e.g.,
[8, 9]. However, the problem of interest in this work involves, in addition to particle-flow
coupling, heat transfer from the particles to the fluid by means of radiation absorption,
particle-to-fluid heat exchange, and thermal mixing enhanced by turbulent motions. The
physical processes governing this type of flows, and their complex interactions, are not
fully characterized, and therefore are still subject to intense research, e.g., [10].

Modeling of irradiated particle-laden turbulent flow and its numerical investigation and
validation against experimental data are difficult tasks that intrinsically require several
model assumptions, selection of coefficient and parameter values and characterization
of initial and boundary conditions. These steps, even if performed carefully, result in
potential sources of uncertainty that can impact the quantities of interest (QoI). Some
examples encompass the incomplete description of particle diameters [11] and thermal
radiative properties, variability of the incident radiation and its complex interaction with
boundaries, and model-form incertitude [12]. In addition, accurate representation of the
underlying physical phenomena mandates the utilization of expensive high-fidelity (HF)
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numerical simulations. As a representative example, the total cost (transient + collection
of statistics) of a HF calculation of this problem requires in the order of 5M core-hours
per realization on the Argonne Leadership Computing Facility (ALCF, Mira supercom-
puter) [13]. Hence, characterization of the stochastic output by means of running hun-
dreds, or thousands, of realizations with different input values easily exceeds the resources
of the largest computing facilities available. The objective of this paper, therefore, is to
investigate the utilization of multi-fidelity UQ strategies to efficiently characterize irradi-
ated particle-laden turbulent flow subject to uncertainty.

Detailed descriptions on modeling and numerical discretization of irradiated particle-
laden turbulent flow are given in Jofre et al. [14] and Esmaily et al. [15], respectively.
Therefore, the remaining of the paper is organized as follows. First, the accelerated
sampling strategies investigated are presented in Section 2. The system of interest is
detailed next, in Section 3, in terms of physical parameters, uncertainties, QoIs, and
models designed. Then, in Section 4, the performances of the accelerated estimators are
analyzed. Finally, conclusions and future work are discussed in Section 5.

2 MONTE CARLO-TYPE ACCELERATED SAMPLING STRATEGIES

In computational science and engineering, multiple physical/mathematical/numerical
models with different features can be constructed to characterize a system of interest. Typ-
ically, computationally expensive HF models are designed to describe the system with the
degree of accuracy required by the problem under study, while low-fidelity (LF) models are
formulated as less accurate, but relatively cheaper, representations. Outer-loop problems,
such as inference, UQ and optimization, require large numbers of model evaluations for
different input values, resulting in unaffordable computational requirements in the case of
large-scale, multiphysics calculations. The objective of multi-fidelity methods, therefore,
is to reduce the cost of the outer-loop problem by combining the accuracy of the HF
models with the speedup achieved by the LF representations. Different multi-fidelity UQ
strategies exist in the literature; see, for example, the exhaustive review by Peherstorfer
et al. [16]. However, due to the high-dimensional input space and the complexity of the
conservation equations involved, this study is restricted to a reduced subset of acceleration
strategies appertaining to surrogate-based MC-type sampling approaches.

As its name indicates, MC-type approaches are derived from the original Monte Carlo
method, in which the expectation of the QoI Q = Q(ξ), as a function of the stochastic
inputs ξ, is estimated via a sample average. Let E [Q] and Var (Q) denote the mean and
variance of Q. Given N independent realizations of the stochastic input, denoted ξ(i), the
MC estimator of E [Q] is defined as Q̂MC

N = N−1
∑N

i=1Q
(i), where Q(i) = Q(ξ(i)). Although

unbiased, the accuracy of Q̂MC
N , measured by its standard deviation

√
Var (Q) /N , decays

slowly as a function of N . Therefore, for a fixed computational budget (∝ N) a viable
alternative to increase the MC accuracy is to possibly replace Q with other quantities
with smaller variances.
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2.1 Multi-level Monte Carlo

One of the most popular acceleration strategies is the multi-level (ML) method [17].
This technique, inspired by the multigrid solver idea in linear algebra, is based on evaluat-
ing realizations of Q from a hierarchy of models with different levels `, ` = 0, . . . , L, with L
the most accurate model, in which Q is replaced by the sum of differences Y` = Q`−Q`−1,
where by definition Y0 = Q0. As a result, the QoIs of the original and new ML problems
have the same mean E [Q]. An example of a level is the grid resolution considered for
solving the system of equations, so that a LF (or HF) model can be established by simu-
lating Q on a coarse (or fine) grid. Then, E [Q] can be computed using the ML QoI and
an independent MC estimator on each level ` as

Q̂ML =
L∑
`=0

Ŷ MC
` =

L∑
`=0

1

N`

N∑̀
i=1

Y
(i)
` . (1)

This approach is referred to as multi-level Monte Carlo (MLMC) and the resulting es-

timator has a variance equal to Var
(
Q̂ML

)
=
∑L

`=0N
−1
` Var (Y`). Consequently, if the

level definition is such that Q` → Q in mean square sense, then Var (Y`)→ 0 as `→∞,
and therefore fewer samples are required on the finer level L. In particular, it is possible
to show that the optimal sample allocation across levels, N`, is obtained in closed form
given a target variance of the MLMC estimator equal to ε2/2 and resulting in [17]

N` =

∑L
k=0

√
CkVar (Yk)

ε2/2

√
Var (Y`)

C`
, (2)

where the computational cost of the individual Y` evaluations is denoted by C`.

2.2 Control variates Monte Carlo

To accommodate LF representations that are not obtained directly from coarsening the
HF models, a common approach is to utilize LF realizations as a control variate [18, 19].
This approach requires that a generic QoI, f , be replaced by f + α(g − E [g]), where
g is a function chosen for its high correlation with f and for which the value of E [g]
is readily available. However, in the problem of interest here the LF correlation and
expected value are not available a priori, and consequently need to be established during
the computations along with the HF calculations. As a consequence, the expected value
of the LF model is generally approximated by means of an MC estimator requiring a set
of additional (independent) LF computations. The control variates MC estimator (CV)
is defined as

Q̂CV = Q̂HF,MC + α
(
Q̂LF,MC − E

[
Q̂LF

])
, (3)

where the parameter α = −Cov
(
QHF, QLF

)
/Var

(
QLF

)
is chosen to minimize the variance

of Q̂CV by requiring dVar
(
Q̂CV

)
/dα = 0. The optimal α selection leads to

Var
(
Q̂CV

)
= Var

(
Q̂HF,MC

)(
1− r

1 + r
ρ2
)
, (4)
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where ρ = Cov
(
QHF, QLF

)
/
√

Var (QHF)Var (QLF) is the Pearson correlation coefficient
between the HF and the LF models, and r = NLF/NHF − 1 is used to parameterize the
additional rNHF LF realizations needed in order to evaluate

E
[
Q̂LF

]
≈ 1

NHF(1 + r)

NHF(1+r)∑
i=1

QLF,(i). (5)

As a result, the optimal control variate is obtained for a particular r value that, in turn,
depends on the correlation between the two models and their cost ratio. As fully detailed
in [20], the optimal r value is obtained from

r = −1 +

√
CHF

CLF
ρ2

1− ρ2
, (6)

with CHF and CLF the computational cost of individual HF and LF samples.

2.3 Multi-level multi-fidelity Monte Carlo

Given the flexible nature of the MC-type sampling methods, the ML and CV ap-
proaches can be hybridized in different fashions to generate a class of estimators generally
referred to as multi-level multi-fidelity (MLMF), e.g., [20, 21]. For example, this work
considers the MLMF estimator introduced in [20], which is constructed by taking the
difference Y` to be the object of an additional control variate. Similar to the two previous
estimators, the central idea is to use the HF level to minimize the deterministic bias, while
the LF models are exploited to speedup the process of reducing the estimator’s variance.

Before presenting the estimator, some definitions applicable to the scope of this sub-
section are introduced to simplify the subsequent exposition: (i) subscript ` refers to the
different ML levels, and (ii) Y` = Q`−Q`−1 with Y0 = Q0; (iii) at each level `, the reference
fidelity is identified by superscript RF, whereas CV indicates control variate realizations.
Following this terminology, the MLMF is formulated as

Q̂MLMF =
L∑
`=0

 1

NRF
`

NRF∑̀
i=1

Y
RF,(i)
` +

α`
NRF
` (1 + r`)

r` NRF∑̀
i=1

Y
CV,(i)
` −

r`N
RF∑̀

j=1

Y
CV,(j)
`

 , (7)

where the vector r` = NCV
` /NRF

` − 1 is used to characterize the supplementary r`N
RF
` CV

realizations per level `, and the optimal parameters α` = −ρ`
√

Var (Y RF
` )/

√
Var (Y CV

` )
are obtained similarly to the standard control variates approach with ρ` — a level-based
Pearson correlation coefficient — defined as

ρ` =

∑NRF
`

i=1

(
Y

RF,(i)
` − E

[
Y RF
`

]) (
Y

CV,(i)
` − E

[
Y CV
`

])√∑NRF
`

i=1

(
Y

RF,(i)
` − E [Y RF

` ]
)2∑NRF

`
i=1

(
Y

CV,(i)
` − E [Y CV

` ]
)2 . (8)
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Table 1: List of random inputs. All inputs are assumed to be independent and uniformly distributed.

Variable Interval Variable Interval
1. Prt. rest. coeff. 1 [0.0 : 0.6] 8. Mass load. ratio [18 : 22]%
2. Prt. rest. coeff. 2 [0.1 : 0.7] 9. Prt. abs. eff. [0.37 : 0.41]
3. Prt. rest. coeff. 3 [0.2 : 0.8] 10. Prt. scatt. eff. [0.69 : 0.76]
4. Prt. rest. coeff. 4 [0.3 : 0.9] 11. Radiation [1.8 : 2.0] MW/m2

5. Prt. rest. coeff. 5 [0.4 : 1.0] 12. Radiated wall [1.6 : 6.4] kW/m2

6. Stokes’ drag corr. [1.0 : 1.5] 13. Opposite wall [1.2 : 4.7] kW/m2

7. Prt. Nusselt num. [1.5 : 2.5] 14. Side x-y walls [0.1 : 0.2] kW/m2

The Q̂MLMF estimator is unbiased since each term is obtained from an unbiased MC
estimator, and its variance, resulting from considering the contribution of each Y` term
plus the covariance between the RF and CV estimators, is given by

Var
(
Q̂MLMF

)
=

L∑
`=0

1

NRF
`

Var
(
Y RF
`

)(
1− r`

1 + r`
ρ2`

)
. (9)

3 DESCRIPTION OF THE SYSTEM OF INTEREST

The system studied in this work is based on a small-scale, experimental apparatus
designed to represent the physical mechanisms encountered in volumetric particle-based
solar receivers. The main physical parameters of the problem, and their values, are bulk
Reynolds number Reb = 20000, Kolmogorov Stokes numbers 5 < Stη = τp/τη < 20, total
mass loading ratio MLR = npmp/ρf ≈ 20%, and radiation power P ≈ 1000 W. Complete
details of the experiment configuration and computational setup are found in [22] and [14],
respectively. The subsections below describe (i) the uncertainties and QoIs considered,
and (ii) the high- and low-fidelity models constructed to perform the UQ analysis.

3.1 Uncertainties and quantities of interest

This work considers 14 stochastic variables in the UQ analysis. As shown in Table
1, the variables target experiment and model-form uncertainties. These correspond to
incertitude in particle restitution coefficient for the different classes (1 − 5), correction
to Stokes’ drag law (6), particle Nusselt number (7), mass loading ratio (8), particle
absorption and scattering efficiencies (9, 10), incident radiation flux (11), and heat fluxes
from the walls to the fluid (12 − 14). The performance of the estimators is analyzed by
focusing on time-averaged, normalized temperature increments, i.e., Q = (〈T 〉−T0)/T0 =
∆T/T0, at the probe location as these quantities are available from the experiments;
T0 = 300 K is the temperature of the inflow particle-fluid mixture.

The intervals of the stochastic variables listed in Table 1 have been carefully character-
ized on the basis of information from the experiments, and by taking into consideration
results and conclusions extracted from published studies; see Jofre et al. [14] for complete
details.
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Figure 1: Prediction and CI of the individual, pilot HF (a), LF1 (b) and LF2 (c) MC estimators for
Q = ∆T/T0 profile at probe location. Comparison between MC estimators (d).

3.2 High- and low-fidelity levels designed

As described in [23], the Lagrangian-Eulerian (LE) approach is flexible enough to
support different degrees of particle-laden flow modeling. This feature is leveraged in this
work to construct one HF model and two LF representations, denoted LF1 and LF2.

The HF level corresponds to a point particle direct numerical simulation (PP-DNS)
with physical particles and sufficient resolution (≈ 55M cells/section) to capture all the
significant turbulent scales, while approximating the particles as Lagrangian inertial points
(≈ 15M particles/section). The flow grid is uniform in the streamwise direction with spac-
ings in wall units equal to ∆x+ ≈ 12, while stretched in the wall-normal directions with
the first grid point at y+, z+ ≈ 0.5 and with resolutions in the range 0.5 < ∆y+,∆z+ < 6.
The radiative heat transfer equation is solved on an uniform discrete ordinates method
(DOM) mesh of 270× 160× 160 gridpoints with 350 quadrature points (discrete angles).

The LF representations are designed following the surrogate particle approach [23]
together with a coarsening of the flow and radiation HF resolutions. The statistical weights
(uniform) of the surrogate particles for the LF1 and LF2 levels are 5 and 10, respectively.
Similarly, the flow and radiation meshes, and quadrature points are uniformly coarsen in
each direction by a factor of 5 (LF1) and 10 (LF2). As a result, the LF1 and LF2 levels
are approximately 170× and 1300× cheaper per sample than HF, respectively.
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Figure 2: Variance of Y` across levels (a) and squared correlation coefficient between fidelities (b) for
Q = ∆T/T0 profile at probe location based on pilot samples.

4 PERFORMANCE ANALYSIS OF THE ESTIMATORS

The first step toward efficiently investigating the impact of uncertainty on heat trans-
fer mechanisms is to analyze the performance of the estimators in terms of speedup and
quality of their predictions. This section is devoted to this objective by (i) carefully
analyzing the features of the individual HF, LF1 and LF2 MC estimators and their inter-
dependences, and (ii) calculating the optimal distribution of samples for the ML, CV and
MLMF estimators and quantifying their coefficient of variation (CoV) and comparison
against experimental data.

4.1 Features of the Monte Carlo estimators based on pilot samples

The calculation of the optimal allocation of samples for the ML, CV and MLMF esti-
mators is based on the properties of Var (Y`) and ρ between the different levels. However,
these quantities are not available a priori, and therefore the typical strategy is to evaluate
them based on a small, initial set of realizations referred to as pilot samples. Following
this approach, 16 HF, 128 LF1 and 256 LF2 realizations are initially computed and their
features used to extrapolate the optimal number of samples. Their MC estimations for
Q = ∆T/T0 profile at probe location are depicted in Figure 1.

Four main observations can be extracted from the plots in the figure. First, the shape
of the temperature profile indicates that most of the radiation absorption is produced
close to the walls due to the large concentration of particles in those regions as a result of
turbophoretic effects. The second observation is that there is remarkably more variability
toward the walls, viz. 0.2 > y/W > 0.8, than at the centerline. A clear indication of
this feature is, for example, the larger width of the confidence interval (CI) for Q̂MC

HF at
y/W ≈ 0 and 1. Third, as indicated by the CI, the estimation is significantly converged
for Q̂MC

LF2, but not for Q̂MC
LF1 nor (specially) Q̂MC

HF . Finally, the fourth observation is that the
LF levels approximate reasonably well the HF prediction except for the near-wall regions
where the discrepancy becomes substantial.
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Figure 3: Optimal (ε ≈ 0.05E [Q]) number of samples per level (opaque lines) and equivalent HF
realizations (semi-opaque lines) (a), and ratio r (b) for Q = ∆T/T0 profile at probe location based on
pilot samples.

4.2 Variance across levels and correlation between fidelities

The variance across levels, Var (Y`), and squared correlation coefficient, ρ2, for Q =
∆T/T0 profile at probe location based on pilot samples are shown in Figure 2. The
colored dashed lines in plot (a) correspond to Y0 = Var (QLF2), Y1 = Var (QLF1 −QLF2)
and Y2 = Var (QHF −QLF1), whereas the black solid line represents Var (QHF). In plot
(b), the colored dashed line indicates the squared correlation coefficient for the control
variates constructed using HF and LF levels (HF − LF1 and HF − LF2), and utilizing
LF1 and LF2 levels (LF1− LF2).

The results in plot (a) show that there is variance decay from Y0 to Y1, but not between
Y1 and Y2. Even so, speedup would be still obtained with respect to the plain Q̂MC

HF

estimator by using the ML strategy as Var (QHF) /Var (Y2) ≈ 2 for the points in the
profile with largest variability. In terms of correlation between the HF and LF levels, plot
(b) shows that ρ2 is very small at the centerline points, where accelerating the estimators
is not important since the variability is very low. However, it increases to ρ2 ≈ 0.5 and
ρ2 ≈ 0.8 for y/W < 0.2 and y/W > 0.8, respectively. With respect to the HF−LF results,
the correlation between the LF levels is larger along the entire profile, with values ρ2 ≈ 0.8
for regions close to the walls, indicating that the construction of a MLMF estimator can
be beneficial.

4.3 Allocation of samples for optimal performance of the estimators

The values of Var (Y`) and ρ based on the pilot samples can be used to obtain an
extrapolated number of samples per level for the construction of estimators with optimal
performance. The expressions to calculate these numbers are given in Eqs. 2 and 6.
As detailed in Section 3.2, setting the computational cost per sample to be CHF = 1,
CLF1 = 1/170 and CLF2 = 1/1300, the optimal number of samples per level, N`, and ratio
of additional samples, r, for Q = ∆T/T0 profile at probe location with an accuracy of
5% of the estimated QoI, i.e., ε ≈ 0.05E [Q], are shown in Figure 3. Similarly as in

9
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Table 2: Optimal samples allocation computational cost for the MC, ML, CV and MLMF estimators.

Model # HF runs # LF1 runs # LF2 runs # Equiv. HF cost
MC HF 51 - - 51

ML HF-LF1-LF2 22 199 1279 25
CV HF-LF1 22 217 - 24
CV HF-LF2 26 - 541 27

MLMF HF-LF1-LF2 21 92 528 22

Figure 2, the colored dashed lines in plot (a) indicate N0, N1 and N2, while the black
solid line corresponds to N for a straight Q̂MC

HF with same ε. The additional semi-opaque
lines represent the number of equivalent HF realizations for the N0 LF2 (dashed red), N1

LF1 (dashed-dotted blue) and total (solid gray) number of samples. The colored dashed
lines in plot (b) indicate r for CV estimators based on HF − LF1 and HF − LF2, and a
MLMF estimator utilizing HF− LF1 as a ML and LF1− LF2 as a CV.

The results shown in the plots are summarized in Table 2 by indicating the optimal
number of HF, LF1, and LF2 realizations required to construct MC, ML, CV and MLMF
estimators with ε ≈ 0.05E [Q] for the point in the profile with highest computational cost.
The point is different for each estimator, but, as inferred from the plots, it is located close
to the walls for all cases. The table also summarizes the total computational cost, given in
terms of equivalent HF realizations, for the different estimators and level combinations. As
a reference, the utilization of a plain Q̂MC

HF estimator would necessitate 51 HF realizations.
Instead, using acceleration strategies, equivalent estimator predictions can be obtained
at less than half the cost. It is important to note that the speedup obtained with these
approaches depends on the problem and QoI. Correspondingly, the Q̂ML estimator requires
22 HF, 199 LF1 and 1279 LF2 realizations resulting in a total equivalent cost of 25
HF runs. The Q̂CV estimators demand 24 and 27 equivalent HF realizations, and the
Q̂MLMF estimator obtains a similar prediction by means of 22 equivalent HF runs. From
a computational cost point of view, the four acceleration strategies perform comparably
with the Q̂MLMF estimator achieving the lowest value. Therefore, the subsequent analysis
is based on the prediction given by the optimal Q̂MLMF estimator.

4.4 Quality of the prediction and validation against experimental data

The final step of the analysis is to verify and validate the predictions. This is portrayed
in Figure 4, where the quality of the optimal Q̂MLMF estimator is shown in terms of CoV
and comparison against experimental data. The solid black line in plot (a) represents the
CoV of the MC estimator based on the 16 pilot HF realizations which depicts a maximum
value of CoV ≈ 10% at y/W ≈ 1. In comparison, the red dashed line indicates that the
maximum CoV reduces to less than 5% when utilizing the optimal Q̂MLMF. Moreover, as
shown in plot (b), the prediction obtained by the optimal Q̂MLMF is significantly converged
as demonstrated by the collapse of the CI interval into a single line, and the experimental
data is found within the distribution (± standard deviation) of the estimated QoI.
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Figure 4: Quality of the MC (pilot) and MLMF (optimal) estimators measured in terms of CoV (a) and
comparison against experimental data (b) for Q = ∆T/T0 profile at probe location.

5 CONCLUSIONS

Performing UQ studies of large-scale, multiphysics applications is challenging due to
the expensive HF calculations required and the large number of uncertainties typically
encountered. For instance, the utilization of a straightforward MC approach for the prob-
lem under study would require O(102) million core-hours in some of the most advanced
supercomputers, while, as shown in Section 4, equivalent predictions can be obtained at
significant cost saving ratios by means of multi-fidelity strategies.

Ongoing work is focused on leveraging the speedup obtained from the acceleration
strategies to characterize heat transfer mechanisms subject to uncertainty for this prob-
lem. Future work will tackle the utilization, and further performance improvement, of
this type of strategies on problems with higher particle mass and thermal loadings.
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