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Abstract. This paper discusses the development of the native non-linear fluid-structure
interaction solver in the open source SU2 package, along with the coupled adjoint calcu-
lations for aeroelastic optimization. A compliant NACA 0012 airfoil test case is inves-
tigated with a clamped leading edge and flexibility in the rest of the airfoil as dictated
by a varying stiffness distribution. The objective function of aerodynamic efficiency was
used, calculated in aeroelastic equilibrium, with structural material properties as the de-
sign variables. The sensitivity to the input design variables is calculated through the
Algorithmic-Differentiation-based Discrete Adjoint (ADDA) sensitivity analysis method.
Aeroelastic optimization using sequential least squares programming is demonstrated for
transonic aerodynamics governed by the Euler equations.

1 INTRODUCTION

Aerodynamic optimization has long been studied [1, 2] in order to use Computational
Fluid Dynamic (CFD) techniques for not only analysis but also design. These methods
consider the external shape, but it is increasingly relevant to take into account the inter-
nal structure. This has led to the development of multidisciplinary design optimization
(MDO) techniques for wing and aircraft design, which rely on the modelling of fluid-
structure interaction (FSI) [3, 4, 5].

The framework for optimization in this work is the open source SU2 package. SU2 is
a multi-physics solver for aerodynamic design [6, 7]. Some examples of applications of
SU2 include aeroacoustics [8, 9, 10], turbomachinery [11, 12] and aeroelasticity [13, 14].
A native, fully coupled non-linear FSI solver has been built by Sanchez et al [13, 14]
which will be used in this paper. Adjoint-based optimization provides huge computational
advantage for optimization with large number of design variables. This is the case of shape
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optimization [15, 1, 2]. However, this methodology often requires manual linearization
which becomes increasingly time-consuming with increasing complexity of the problem
to be solved. Algorithmic differentiation has been seen to be an efficient alternative to
manually-differentiated adjoints. This methodology has been implemented for the fluid
solver in SU2 by Albring et al. [16, 17], and later for the fully coupled adjoint FSI solver
by Sanchez et al [14].

The paper is organized such that Section 2 briefly presents the governing equations of
the FSI primal solver and the adjoint equations. Section 3 discusses the numerical results
of the preliminary aeroelastic optimization. Finally, section 4 summarizes the conclusions
and future work.

2 BACKGROUND

The fluid-structure interaction problem is defined such that the fluid and structure
domains are governed by their own constitutive equations and interact with each other
over a common interface. Brief description will be given below, and full description of
this implementation can be found in the papers by Sanchez et al [13, 14]. A three-field
partitioned approach is used in which along with structure, S , and fluid domain, F ,
the third field is the mesh, M , which allows the transfer of displacement information in
the structure to the fluid domain as required. This type of formulation, though is more
computationally expensive than a two-field formulation, has been found to be suitable for
problems with large structural displacements [18, 3], therefore is the chosen strategy for
this work.

The governing equations of the three-field formulation can be symbolically written as

G = G (u,w, z) =


S = S (u, w, z) = 0

F = F ( w, z) = 0

M = M (u, z) = 0,

(1)

where w is the discrete unknowns on the fluid domain, the discretized nodal positions of
the fluid mesh are defined by z and the discretized nodal displacements of the structure
are defined by u. The key features in the solution of each of the three fields are outlined
next.

2.1 Fluid Dynamics

The fluid solver in SU2 has been designed for partial differential equations representing
numerous flow types on a domain Ω. Here, the fluid problem in (1) is defined using the
compressible form of the Navier-Stokes equation for viscous flow,

∂wΩ

∂t
+∇ · Fc(wΩ, zΩ)−∇ · Fv(wΩ, zΩ)−Q = 0 (2)

where Fc and Fv are the convective and viscous fluxes respectively and Q is a generic
source term. For Euler flows, which will be used in this work, Q and Fv are zero. The
remaining two variables are defined by,
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wΩ = {ρ, ρv, ρe}T , Fc =


ρ(v − żΩ)

ρv ⊗ (v − żΩ) + ¯̄Ip
ρe(v − żΩ) + pv

 (3)

where ρ is the fluid density, v = {v1, v2, v3}T ∈ R3 is the vector of flow speeds in a
Cartesian system of reference, e is the total energy per unit mass and p is the static
pressure. The discretized mesh velocity vector at point of evaluation of the flux is defined
by żΩ, however only the equilibrium condition is used for the static cases discussed in this
work.

Assuming a perfect gas with a ratio of specific heats γ and gas constant R, the pressure
and temperature are given by p = (γ − 1)ρ

[
e− 1

2
(v · v)

]
and T = p/(ρR) respectively.

The partial differential equations are discretized using a finite volume method on a dual
grid with control volumes constructed using a median-dual vertex-based scheme [7]. The
convective fluxes can be discretized using centered or upwind schemes in SU2 and for this
work the centered Jameson-Schmidt-Turkel (JST) scheme has been used.

2.2 Structural Mechanics

Formulation based on the finite deformation framework of Bonet and Wood [19] has
been used to define the structural domain to allow problems with large displacements
which are discretized in space using isoparametric finite elements. The pointwise equilib-
rium condition in the structure, ignoring inertial effects, is defined by

div σ + f = 0, (4)

where σ is the Cauchy stress tensor and f is the actuating forces per unit volume acting
on the structure. A weak form of the equilibrium is obtained through the principle of
virtual work. For an arbitrary virtual displacement, δr, from a current configuration of
the body, the equilibrium condition can be described by

δW =

∫
v

σ : δd dv −
(∫

v

f · δr dv +

∫
∂v

t · δr da
)

= 0, (5)

where the Cauchy stress tensor σ together with the virtual rate of deformation tensor d
defines the internal component of the virtual work. The external component is defined by
the sum contributed by both actuating forces per unit volume f , and the applied surface
traction per unit area, t. The volume of the body is defined by v and external surface is
represented by ∂v.

The equilibrium condition defined by (5) can be discretized to lead to structural field
problem of (1), which is defined by

S (u,w, z) = T(u)− Fb − FΓ(u,w, z) = 0, (6)

where T(u) are the internal equivalent forces, Fb are the body forces, and FΓ(u,w, z) are
the surface forces acting over the boundary Γ.

3



Charanya Venkatesan-Crome, Ruben Sanchez and Rafael Palacios

The constitutive model used in this work assumes isotropic, hyperelastic structure.
Neo-Hookean material model [19] is used for which the Cauchy stress tensor is defined as

σNH =
µ

j
(b− I) +

λ

j
(ln j)I, (7)

λ =
Eν

(1 + ν)(1− 2ν)
; µ =

E

2(1 + ν)
,

where j is the determinant of the deformation gradient of the structural problem, b is
the left Cauchy-Green deformation tensor, E is the Young’s modulus and ν is the Poisson
ratio of the material.

2.3 Mesh Domain

The mesh domain is the third field of the problem, incorporated in order to handle
large displacements from the structural mesh which would modify the fluid domain. A
pseudo-linear elastic definition is used to describe the mesh domain as

M (u, z) = K̃mz− f̃(u), (8)

where K̃m is the fictitious stiffness matrix of the mesh and f̃ is the fictitious force to
enforce matching boundary displacements.

2.4 Coupled Problem

The coupled problem is defined by combining the continuity of displacements over the
common interface and the equilibrium conditions for the fluid and structural tractions. A
Dirichlet-to-Neumann operator is defined for the fluid domain to map the fluid tractions
using the fluid displacements at the fluid-structure interaction boundary, Γ. Similarly,
a Neumann-to-Dirichlet operator is defined for the structural domain which maps the
structural displacements on the interface using the structural tractions. This enables the
following fixed-point iteration:

D−1
S (−DF (uΓ)) = uΓ. (9)

The coupled problem is solved using non-linear Block Gauss-Seidel iterations as described
by Barcelos and Maute [20]. In each iteration, the governing equations for the fluid, struc-
ture and mesh fields are solved sequentially, and the convergence criterion is evaluated.
This criterion corresponds to the residual of displacements at the interface to be within
tolerance, Ru = ‖un+1

Γ − un
Γ‖ < ε.

To prevent the appearance of divergence issues, a relaxation parameter has been incor-
porated to the formulation [21, 13]. In addition to this, a ramped loading is used which
transfers the loads to the structural domain during a specified number of BGS iterations
[13]. This ramp is used to prevent overshoots in the solution process of the first few
structural iterations, due to large variations in the external and internal forces balance.

4



Charanya Venkatesan-Crome, Ruben Sanchez and Rafael Palacios

2.5 Fluid-structure interaction adjoint solution using algorithmic differenti-
ation

For an objective function J , the constrained optimization problem can be defined as

min
a
J(u,w, z, a))

subject to G (u,w, z, a) = 0,
(10)

where a is a vector design variables. In particular, in this work a is a vector of multipliers
applied to a reference Young modulus, Eref , on different regions of the structural domain
to lead to bespoke Young modulus distribution dictated by E

E = a · Eref . (11)

The aerodynamic resultant forces are computed by,

F =

∫
∂v

pnS ds. (12)

where p is the static pressure on the boundary surface, S is the boundary surface and nS is
the unit normal vector. The objective in this work is to maximise efficiency, therefore the
cost function, J = −CL/CD, is used where the lift and drag coefficients are obtained from
the rotation of F with the angle of attack of the problem [22]. Using structural design
variables with an aerodynamic goal implies that J is implicitly dependent not only on
the structural problem, but also on the fully coupled adjoint solution of a fluid-structure
interaction problem, which will be discussed briefly below.

By considering the dependencies of each sub-problem and re-writing the problem in
fixed point iterators [14], the overall optimization problem can be obtained. The structural
problem depends on the state variables from all three fields and can also be explicitly
dependent on the design variables,

S (u∗, z∗,w∗, a) = 0⇔ u∗ = S(u∗, z∗,w∗, a), (13)

where ∗ refers to the variables at which the solution to the fixed-point operator is feasible.
The flow problem depends explicitly on its own conservative variables and on the

position of the nodes on the flow domain (including the FSI interface), but the dependence
on the structural state variables is not direct due to the three-field formulation. For
completeness, explicitly dependent design variables for the flow solver are also included:

F (w∗, z∗, a) = 0⇔ w∗ = G(w∗, z∗, a). (14)

The mesh problem is dependent on the structural domain and possibly on the design
variables:

M (u∗, z∗) = 0⇔ z∗ = M(u∗, a). (15)
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Therefore, the overall constrained optimization problem is represented by

min J(w(a), z(a),u(a), a)

subject to u(a) = S(u(a),w(a), z(a), a)

w(a) = G(w(a), z(a), a)

a(a) = M(u(a), a).

(16)

By defining the Lagrangian of the coupled problem, the gradient of the objective func-
tion with respect to the design variables can be described using the adjoint variables
as

dJ

da
=
∂J

∂a
+ ūT ∂S

∂a
+ w̄T ∂G

∂a
+ z̄T ∂M

∂a
. (17)

Differentiating the Lagrangian with respect to the structural variables u, the flow
conservative variables w, and the mesh variables z, leads to the implicit adjoint equations
which can be written in fixed-point iterators as

x̄n+1 = G̃ (x̄n)⇔


ūn+1 = S̃(ūn, ūz̄) = ∂J

∂u

T
+ ∂S

∂u

T
ūn + ūz̄,

w̄n+1 = G̃(w̄n, w̄ū) = ∂J
∂w

T
+ ∂G

∂w

T
w̄n + w̄ū,

z̄ = M̃(z̄ū, z̄w̄) = ∂J
∂z

T
+ z̄ū + z̄w̄,

(18)

with the cross-dependencies defined by

w̄T
ū = ūT ∂S

∂w
; ūT

z̄ = z̄T ∂M

∂u
; z̄T

w̄ = w̄T ∂G

∂z
; z̄T

ū = ūT ∂S

∂z
, (19)

A BGS routine similar to the primal described earlier, as proposed by Martins [23] and
Barcelos [20], is used to find the solution to the coupled adjoint problem. The adjoint
variables are calculated using the reverse mode of algorithmic differentiation.

The process begins with a converged solution that is registered as the input. Following
one solver iteration, the objective function is registered in the appropriate governing
equation iteration. The adjoint variable from this iteration is registered as the output
which is used to initialize the adjoint for the next iteration. The algorithm performs a
reverse run through the recorded path of the governing equations and extracts the new
adjoint output. The algorithm loops through the routine until the the adjoint residual is
within tolerance, or alternatively until a maximum number iterations are reached.

For the optimization, the objective function and gradient evaluated above will be used
by sequential least-squares programming (SLSQP) optimizer available in SciPy, to update
the design variable within user-defined bounds for each iteration [24].

3 NUMERICAL RESULTS AND DISCUSSION

In this section, the aeroelastic optimization described above will be demonstrated for a
compliant NACA 0012 aerofoil, with results restricted to small displacements at this stage.
The optimization aims to maximize aerodynamic efficiency through the modification of
the stiffness distribution. Figure 1 illustrates the computational domain of the fluid
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and structural mesh. The chord length of the airfoil, c, was 1 m, and a farfield of 20
chord lengths was used to ensure freestream boundary conditions were captured. The
airfoil was clamped at the leading edge up to 20% chord, while the rest of the structure
was characterized by a distribution of stiffness split into 10 regions on the upper and
lower halves as shown in Figure 1. Thus, there are a total of 20 design variables for the
optimization problem, as described in (11). The freestream conditions and the structural
properties are defined in Table 1.

20c

0.2c

clamped flexible

Figure 1: Problem description of the fluid and structural domain

Table 1: Freestream conditions and structural properties for the FSI problem

Mach Number, Ma 0.8 Fluid Density, ρf 1.18 kg/m3

Angle of Attack, α 1.0 ◦ Airfoil Density, ρs 8000 kg/m3

Pressure, pdyn 0.355 Pa Poisson Ratio, ν 0.4
Temperature, T∞ 0.002 K Young Modulus, Eref 20 kPa

3.1 Convergence Study

Mesh convergence study was carried out on both the fluid and structural mesh to ensure
suitability for this work. Since the displacements involved are restricted to be small, this
study was carried out independently on the two domains, albeit the coupled simulation.
Firstly, for the fluid domain three meshes were tested the results of which are shown in
Figure 2 (a). Moving from the coarse mesh to the medium fine caused 2.6% variation in
efficiency but further refinement beyond the medium mesh only yielded variation of 0.2%.
Therefore, the medium fine mesh was chosen for the fluid mesh which had 5233 nodes
and 10216 triangular elements.

For the structural domain, the results from five meshes are shown in Figure 2 (b). The
first refinement from the coarse mesh led to change in tip displacement of 4.3%. Further
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Figure 2: Mesh Independence (a) Flow mesh (b) Structural mesh

refinements had less effect leading to a total of only 0.9% variation but increased the
computational cost by over three times. Therefore the second mesh was chosen for the
structural domain, which had 795 nodes, 158 triangular elements and 640 quadrilateral
elements.

3.2 Aerodynamic Optimization using Stiffness Distribution

An unconstrained aerodynamic optimization was set-up, with the design variables
bounded between 0.1 to 10 to keep the structural displacements small. Figure 3 (a)
shows the evolution of the objective function during the iterations starting from kj = 1
for j = 1, 10, 16, 40. Around 20 iterations are needed for convergence. Figure 3(b) shows
the resulting pressure coefficient, CP , distribution at some of the key iterations. From this
it can be seen that there is little change on the upper surface and on the lower surface,
the optimizer has slightly delayed the shock formation.

The evolution of the design variables and the structural displacements are shown in
Figure 4. For the upper half of the airfoil, the optimization results have led to decreased
stiffness prior to the shock, with the design variables being bounded by the lowest per-
missible value of 0.1 in this region by Iteration 16. In the region beyond of the shock, the
gradients have led to the stiffening of the structure.

The lower half followed the same trend of decreased stiffness close to the clamped edge
but with increasing stiffness post the shock. The final geometry for the lower half has
shown strong sensitivities at the tip and at the region corresponding to the shock on the
upper surface with reduced stiffness elsewhere.

Due to the positioning of the stiffness reinforcements and softening of the structure
towards the clamped edge, the overall displacement is higher than the equilibrium dis-
placement of the initial design. Figure 4 (d) highlights the difference in resulting shape
of the aerofoil beginning with the undeformed NACA0012 (CL/CD = 15.17) and the de-
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Figure 4: Evolution of design variables on the (a) upper and (c) lower airfoil surfaces, (b) displacement
on the upper surface and (d) overall airfoil shapes with deformed shape magnified by ×50

formed shapes magnified by ×50. The initial uniform stiffness distribution led to the
upward movement of the airfoil due to the pressure delta created by stronger shock on
the suction side. This deformation led to higher aerodynamic efficiency (CL/CD = 15.37)
than the undeformed shape. The optimizer pushed this trend further which led to the
optimized deformation with CL/CD = 15.53 based on the bounded design variables.
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4 CONCLUSION

In this paper a framework for aerodynamic optimization using the fully-coupled FSI
primal and adjoint solvers in SU2 has been discussed. The framework has been successfully
demonstrated using an example of a compliant NACA 0012 airfoil in transonic Euler flow
regime, with the aerodynamic efficiency as the objective to maximize and the stiffness
distribution in the airfoil as the design parameter. Future work includes the expansion of
application to cases with large displacements, and incorporating turbulent effects via the
Reynolds Averaged Navier-Stokes equations.
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