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Abstract. A Lattice Boltzmann Method (LBM) with moment based boundary conditions
is used to numerically simulate the two-dimensional flow between parallel plates, driven
by a pulsating pressure gradient. The flow is simulated by using a single relaxation
time model under both non-slip and Navier-slip boundary conditions. Convergence is
investigated by using two distinct approaches. The first approach uses acoustic scaling in
which we fix Mach, Reynolds and Womersley numbers whilst varying the LBM relaxation
time. Diffusive scaling is used in the second approach - here we fix the Reynolds and
Womersley numbers and the relaxation time whilst the Mach number decreases with
increasing grid size. For no-slip conditions using acoustic scaling, the numerical method
converges, but not always to the appropriate analytical result. However, the diffusive
scaling approach performs as expected in this case, showing second-order convergence to
the correct analytical result. Convergence to the analytical solution (though not always
second-order) is also observed for the simulations with Navier-slip using diffusive scaling.

1 INTRODUCTION

The Lattice Boltzmann Method (LBM) is considered as category of computational fluid
dynamics (CFD) methods for fluid simulation. The LBM evolved from the Lattice Gas
Automata (LGCA) [13]. The simple model of LBM is the Bhatnagar, Gross and Krook
(BGK) collision model [4]. Moreover, the LBE is constructed to recover the Navier-Stokes
equations in the macroscopic limit.

Many boundary conditions have been developed for the LBM. The most commonly
used are bounce back boundary conditions. In this paper, a moment-based method is
used. This imposes constraints on the hydrodynamic moments of the particle distribution
function. This method may be viewed as an extension and generalisation of a method
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originally proposed by Noble et. al [10] for a six-point lattice. Moment-based conditions
eliminate the viscosity-dependent error associated with bounce-back and allows the user
to impose a variety of hydrodynamic constraints at grid points. This method has already
been applied to several flows such as rarefied flow with first order Navier-Maxwell slip
boundary conditions [11], and a diffusive slip [3] and no-slip such as [9] and wetting
conditions for multiphase flow (Hantsch and Reis) [6], and adiabatic and heat source
conditions (Allen and Reis) [1]. In all cases, second order accuracy has been confirmed
numerically.

In this paper, we explore the performance of the LBM with moment based boundary
conditions to simulate pulsatile flow between parallel plates, subject to both no-slip and
Navier-slip conditions at solid boundaries. In Section 2, we introduce the discrete velocity
Boltzmann equation and the Lattice Boltzmann Method. We illustrate the moment-based
boundary condition in Section 3. In Section 4.1 we give the exact solutions for the pulsatile
flow. Section 4.2 shows the results for these simulation and investigates the convergence
for (i) fixed Mach, Womersley and Reynolds numbers and varying relaxation time (ii) fixed
Womersley and Reynolds numbers and relaxation time and Mach ∼ δx→ 0. Concluding
remarks are given in Section 5.

2 THE DISCRETE BOLTZMANN EQUATION

The discrete velocity Boltzmann equation with he BGK collision operator is [12]

∂tfα + cα.5 fα = −1

τ
(fα − f 0

α) + Fα, (1)

where {cα} is a finite set of discrete particle velocities corresponding to the finite set of
distribution functions {fα} for the D2Q9 lattice (see Figure 1), τ is the relaxation time
and Fα is the forcing term.

Figure 1: D2Q9 Lattice

The BGK collision operator leads to relax the fα to the equilibrium with the given
relaxation time. The functions f 0

α are the equilibrium distribution functions for the D2Q9

model. The first two moments of fα are density ρ =
∑8

α=0 fα and momentum ρu =∑8
α=0 cαfα the same as the first two moment of f 0

α. The momentum flux tensor is Π =∑8
α=0 cαcαfα and the equilibrium momentum flux tensor is Π0 = PI+ρuu where I is the

Kronecker delta function. The third moment is Q =
∑8

i=0 cicicifi.
The evolution equation for the hydrodynamic moments are obtained by taking zero,

first and second moments of the discrete velocity Boltzmann equation (1) respectively,
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∂tρ+∇.ρu = 0, ∂t(ρu) +∇.Π = F, ∂tΠ +∇.Q = − 1
τ
(Π−Π0) + Fu + uF. (2)

The density and momentum with body force F = ρg are conserved by collisions in first
and second equation of equations (2). By applying the Chapman Enskog expansion to
the discrete velocity Boltzmann equation, we write

Π = Π0 + τΠ1 +O(τ 2), Q = Q0 + τQ1 +O(τ 2), ∂t = ∂t0 + τ∂t1 +O(τ 2), (3)

and we find the first order correction to the momentum flux tensor to be (Π1), which is the
Newtonian viscous stress tensor. The stress tensor is Π1 = −1

3
ρ[(∇u)+(∇u)T ]+O(Ma3)

where (ν = τ
3
) is the kinematic viscosity and (µ = τρ

3
) is the dynamic viscosity. Thus

equations (2), include the Continuity and Navier-Stokes equations. The Mach number
(M) is defined as M = U

cs
� 1, where cs = 1

3
is the sound speed (in lattice units) and U

is taken as a characteristic velocity.
The LBE is found by using the integration on both sides of the equation (1) over a

characteristic for time and using the Trapezoidal Rule to integrate and estimate the right
hand side. Defining fα = fα + δt

2τ
(fα − f 0

α)− δt
2
Fα, we get

fα (x+ cαδt, t+ δt)− fα (x, t) = −1

τ

[(
fα (x, t)− f 0

α (x, t)
)
− τFα

]
, (4)

where τ = τ+0.5δt
δt

. Note that the transformation from fα to fα is required to obtain an
explicit algorithm. The associated macroscopic quantities for the transformed variables
are

ρ =
∑
α

fα = ρ, ρu =
∑
α

cαfα = ρu + ρ
δt
2

F, (5)

Π =
∑
α

cαcαfα =
2τ + δt

2τ
Π− δt

2τ
Π0 − δt

2
(Fu + uF) . (6)

3 MOMENT BOUNDARY CONDITION

At planar boundaries aligned with grid points, the D2Q9 LBM post-streaming always
has three unknown incoming distributions which can be found from three linearly indepen-
dent moment conditions. The moment-based boundary methodology involves imposing
physical constraints on three linearly independent hydrodynamic moments, from which
we obtain the three unknown distribution functions at a boundary.

To apply this condition we consider that we have solid wall at the north and south flow
boundaries. After the streaming step, the unknown distribution functions f 4, f 7 and f 8

at the north boundary and f 2, f 5 and f 6 at the south boundary.
The Navier-slip boundary condition is implemented by choosing three linearly inde-

pendent moments from Table (1). Here we choose the tangential momentum ρux, vertical
velocity momentum ρuy and the tangential momentum flux tensor Πxx at the wall. We
impose them as ρux = us, ρuy = 0, Πxx = ρ

3
+ ρu2

s where us is the slip velocity (we also

3
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note that p = ρ
3

is the pressure). The tangential momentum flux tensor is defined as
Πxx = Π0

xx + τΠ1
xx. Furthermore, Π1

xx ' ∂xux and this is zero under either slip or no-slip
boundary conditions. At north or south boundaries, then, ρuy = 0, ρux = ρus − δt

2
ρGx

and Πxx = ρ
3

+ ρu2
s − ρGxus where F = ρ (Gx, 0) is the body force.

Table 1: Moments at the North and South boundary.

Moments Combination at the North boundary Combination at the South boundary

ρ, ρuy ,Πyy f4 + f7 + f8 f2 + f5 + f6
ρux,Πxy ,Πxyy f8 − f7 f5 − f6
Πxx,Πxxy ,Πxxyy f8 + f7 f5 + f6

Now, we solve the system which is equations (7) to find the unknown distribution
functions.

ρux = f 1 + f 5 + f 8 −
(
f 3 + f 6 + f 7

)
= ρus −

δt
2
ρGx,

ρuy = f 2 + f 5 + f 6 −
(
f 4 + f 7 + f 8

)
= 0,

Πxx = f 1 + f 5 + f 8 +
(
f 3 + f 6 + f 7

)
=
ρ

3
+ ρu2

s − ρGxus. (7)

For example, the unknown distribution functions at the North wall are f 4, f 7 and f 8

f 4 = f 1 + f 2 + f 3 + 2
(
f 5 + f 6

)
− ρ

3
− ρu2

s + ρGxus, (8)

f 7 = −f 3 − f 6 +
ρ

6
+
δt
4
ρGx −

1

2
ρus +

1

2
ρu2

s −
δt
2
ρGxus, (9)

f 8 = −f 1 − f 5 +
ρ

6
− δt

4
ρGx +

1

2
ρus +

1

2
ρu2

s −
δt
2
ρGxus, (10)

where ρ = f 0 + f 1 + f 3 + 2
(
f 2 + f 5 + f 6

)
is found from the definition of the density and

ρuy. The slip velocity is proportional to the shear stress at the wall us = ls∂yuwall thus,

us = − ls
µ

Πxy and

us =
6ls

ρ (1 + 2τ + 6ls)

(
f 1 − f 3 + 2f 5 − 2f 6 +

1

2
ρGx

)
(11)

where ls is slip length. By using ux = us = 0 we can find the unknown distribution
functions with non-slip boundary condition.

4 SIMULATIONS

4.1 The exact solutions for pulsatile flow

The 2D pulsatile flow or Womersley flow is driven by a pulsating pressure gradient.
The pulsating pressure gradient is implemented by using an equivalent body force Gx =
(2Ucν/h

2) cos(wt) in the x-direction where h is the channel half-width, Uc is the centreline
speed for the zero frequency case (i.e. Poiseuille flow), ν = Uch

Recl
kinematic viscosity and

4
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Recl is the centreline Reynolds number. The exact solution with a no-slip boundary
condition at ux = 0 at y = ±h is

ux
Uc

= <

[
−i
W0

(
1−

cosh
(
(1 + i)W0

y
h

)
cosh ((1 + i)W0)

)
e
i2πt
P

]
, (12)

where i =
√
−1, W0 =

√
w
2ν
h is the dimensionless Womersley number, ω = 2π

P
is the

pulsation angular frequency, P is the period and t is the time.

The exact solution with Navier-slip condition ux = us = ls|duxdy | at y = ±h is

ux
Uc

= <

[(
us
Uc

cosh
(
(1 + i)W0

y
h

)
cosh ((1 + i)W0)

+
i

W0

(
1−

cosh
(
(1 + i)W0

y
h

)
cosh ((1 + i)W0)

))
e
i2πt
P

]
, (13)

us
Uc

=
(i− 1)Kn sinh ((1 + i)W0)

W0 [cosh ((1 + i)W0)−KnW0 (1 + i) sinh ((1 + i)W0)]
, (14)

where Kn = ls
h

is the dimensionless slip length. Clearly, the exact solutions for no-slip
and for Navier slip are both independent of the Reynolds number.

4.2 Simulation

We use the LBM and the boundary conditions discussed above to simulate pulsatile
flow. The domain is horizontally periodic. We use computational grids with dimensions
nx × ny where nx = 2 and ny = 16, 32, 64, 128, 256, 512. In the lattice units, the channel
half width is h = ny

2
. The norm error L2(p) over a single period

‖ L (p) ‖2 =

√
1

nθ

1

nxny

∑
i,j

|uLBE (l, j, θ, p)− uExact (l, j, θ, p) |2, (15)

where l = 0, ..., nx, j = 0, ..., ny and the nθ is the number of angles in a period (we use
nθ = 8) here. The total computation is run until t = kP where k is the number of periods
required for the computations to reach a fully-periodic state.

4.2.1 Simulation under no-slip boundary condition

First simulation: acoustic scaling

In this simulation, the centreline velocity is fixed at Uc = 0.1 (in lattice units). This
also fixes the Mach number and gives a guarantee that the M � 1. In this approach,
we fix the centreline Reynolds number Recl = Uch

ν
as we vary the grid size. This specifies

ν and thus gives the relaxation time τ = 3ν. Fixing the Womersley number means that
the period P = nyπRecl

2W 2
0Uc

thus the timestep δt = 1/P is proportional to the grid increment

δx = 2/ny and thus halves as we double the grid size. The convergence study is carried

5
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out by changing the grid size ny and the correspondingly changing τ and P to keep the
Reynolds and Womersley numbers constant.

We choose Womersley numbers close to those used in the literature such as ( [7], [2]
and [5]). Figure (2)(a) shows that for low frequency W0 = 0.194 the velocity is parabolic.
Similar results are found for a range of Recl and grid size for this low frequency case.
For the high-frequecy case W0 = 12.533, the velocity profile flattens. The simulations
successfully predicts this behaviour for different Reynolds numbers ranging from 0.5 to
500. Typical results are shown in Figure (2)(a) and (b) with grid size 64.

For moderate W0, however, the LBM velocity does not agree with the analytical solu-
tion for low Recl=0.5 as shown in Figures (2)(c) and (d), even as we increase the grid size.
Indeed, the simulation appears to converge to a solution different from the exact solution
for these parameters. In this case we note that the kinematic viscosity ν ≈ ny

10
increases

when the period P ≈ 50ny
100

increases. Thus, λ = 1
τ+0.5

is so small that the LBM does not
have sufficient time to react to the changing pressure gradient and this remains the case
even for large grid sizes. For higher Recl better agreement is found between numerical
and analytical results (see Figure (2)(e)). Here, the rate of relaxation is λ ≥ 0.5 and the
period is P = 50ny so the LBM does have sufficient time to react to the pressure changes
in this case.
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Figure 2: (a) W0 = 0.194, Recl=5 (b) W0 = 12.533 with Recl=50 (c), (d) W0 = 3.963, Recl=0.5 and (e)
W0 = 3.963, Recl=5. Blue lines: LBE; ∗: exact solution.

In this simulation set up, for low Womersley number the norm error flattens off for
every Reynolds number (i.e. the method does not converge to the analytical solution) as
shown in Figure (3)(a). Similar behaviour has been observed by Artoli [2] for W0 ≈ 15
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and W0 ≈ 8 in 2D and 3D. Note also that Latt [8] noted that the error is increased
with high grid size in some cases. As the Womersley number increases the method does
converge for higher Reynolds number as shown in Figure (3). However, in each case the
numerical process does converge as the grid size increases, even if the the results do not
necessarily converge to the analytical results. This is demonstrated in Figure (4), where
the error between the velocities computed using grid sizes 16 - 256 are compared with
those obtained using ny = 512.
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(c) W0 = 12.533

Figure 3: Norm error for acoustic scaling.
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Figure 4: Numerical norm error for acoustic scaling for W0 = 3.963.

Second simulation: diffusive scaling

Noting in some cases the lack of convergence to the analytical solutions of the acoustic
scaling approach used above, our second approach uses so-called diffusive scaling. In this
case, the relaxation time τ is fixed. Given that this determines ν, we fix the centreline
Reynolds number Recl = Ucny

2ν
by varying the centreline velocity Uc proportional to grid

spacing δx = 2/ny. In this case, fixing the Womersley number leads to a period P = 3π(ny)2

4W 2
0 τ

and thus δt ∼ δx2 so the timestep reduces by a factor of 4 as we double the grid size.
The convergence study is otherwise similar to that used for the acoustic scaling i.e. we fix
Recl , W0 and τ as we vary the grid size, and we note that the Mach number is inversely
proportional to ny in this case.

This approach is used by Artoli [2], He and Lou [7], Latt [8] and Cosgrove et. al [5].
Initially we choose τ = 0.6 as used by Artoli [2], He and Lou [7].
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(a) W0 = 0.355 and ny=16
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(b) W0 = 3.545 and ny=64
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(c) W0 = 11.201 and ny=64

Figure 5: The velocity for τ =0.6. Blue lines: LBE; ∗: exact solution.
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(b) W0 = 3.545
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Figure 6: (a) and (b) are the norm error vs period number, and (c) norm error vs ny for τ = 0.6.

The comparisons between the analytical and numerical solutions of the velocity profile
for a range of Womersley numbers are successful as shown in the Figure (5)(a-c). Note
that convergence to the final preiodic state is not instantaneous, but must take place over
a number of periods. Furthermore, the number of development periods depends upon W0

and the grid size, as shown in Figure (6)(a), (b).
However, Figure (6) shows second-order convergence is eventually found for a range of

W0. Similar convergence behaviour was found by He and Lou [7], Artoli [2], Latt [8] and
Cosgrove et. al [5].

4.2.2 The simulation with Navier-slip boundary condition

This simulation is again set up using diffusive scaling i.e. with fixed relaxation time
and δt ∼ δx2. In this simulation, we choose a range of different slip lengths to investigate
its effect on the velocity profile and the norm error with different Womersley number.
Figure (7) demonstrates there is a strong agreement between predictions of the LBE
and the exact solution of pulsatile flow. The effect of slip velocity is clear here. For
example, Figure (7) shows there are different slip velocities and they are generally larger
in magnitude with Kn = 0.388 than those for Kn = 0.194. Moreover, the slip velocities
are reduced with Kn = 0.0194 as shown in Figure (7) and the results are very close to
those for no-slip.
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(d) ny=512 and Kn = 0.388
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(e) ny=512 and Kn = 0.194
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(f) ny=512 and Kn = 0.0194
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(g) ny=256 and Kn = 0.388
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(i) ny=256 and Kn = 0.0194

Figure 7: (a), (b) and (c) W0 = 0.3545, τ = 0.6; (d), (e) and (f) W0 = 3.545, τ =0.6; (g),(h) and (i)
W0 = 11.201, τ =0.6. Blue: LBE; red: exact solution.

Convergence behaviour for the Navier-slip simulation is shown in Figure (8). We first
note that the numerical results and consequent error behaviour are, for given W0, Kn,
completely determined by the τ value. Thus, for given τ,W0, Kn, we get the same results
if we double Recl as we double the grid size as we get when we fix Recl. We note that,
for τ = 6, convergence is generally second-order independent of W0 and Kn. For τ =
0.6 and 0.06, however, convergence becomes approximately first-order for non-zero Kn as
the grid size increases, and errors are generally larger for large values of Kn.
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(a) τ = 6 and W0 = 0.3545
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(b) τ = 0.6 and W0 = 0.3545

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 10  100  1000

T
h

e
 n

o
rm

 e
rr

o
r 

(L
2
)

Number of grid points

Non-slip
Kn=0.388
Kn=0.194

Kn=0.0194

(c) τ = 0.06 and W0 = 0.3545
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(d) τ = 6 W0 = 3.545
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(e) τ = 0.6 and W0 = 3.545
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(f) τ = 0.06 and W0 = 3.545
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(g) τ = 0.6 and W0 = 11.201
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(h) τ = 0.06 and W0 = 11.201

Figure 8: The order of norm error at different Kn with Navier-slip boundary condition.

Since the slip velocity is found as an outcome of the simulations, it is interesting to
investigate how the error in slip velocity influences the overall error as shown in Figure
(9). Generally, the value of the norm error in the velocity is larger than the value of norm
error in the slip velocity at each Womersley number, relaxation time, Kn and grid size
which we can see in Figure(8) and Figure(9).
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(a) τ = 6 and W0 = 0.3545

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

 10  100  1000

T
h

e
 n

o
rm

 e
rr

o
r 

(L
2
)

Number of grid points

Kn=0.388
Kn=0.194

Kn=0.0194

(b) τ = 0.6 and W0 = 0.3545
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(c) τ = 6 and W0 = 3.545
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(d) τ = 0.6 and W0 = 3.545
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(e) τ = 0.6 and W0 = 11.201
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(f) τ = 0.06 and W0 = 11.201

Figure 9: The order of norm error for slip velocity at different Kn with Navier-slip boundary condition.

5 Conclusion

In conclusion, we have performed the numerical simulation of pulsatile flow in two
dimensions by using the lattice Boltzmann equation with moment based boundary con-
ditions to impose both no slip and Navier-slip condiitons. Grid convergence studies were
performed using two distinct approaches. In the first, acoustic scaling was used in which
the Mach, Reynolds and Womersley numbers were all kept constant. In the second ap-
proach, diffusive scaling was used. Here, the Reynolds and Womersley numbers, and
the lattice relaxation parameter were all kept constant. The velocity profile was com-
puted and compared with analytical solutions. Also, norm errors were computed and the
method was shown to be second-order for diffusive scaling for the no-slip case. However,
the second order accuracy was not demonstrated for acoustic scaling. The reason for
this is that the small relaxation rates required at small Recl, meaning that the velocity
has insufficient time to relax to equilibrium. For Navier-slip, convergence was generally
second-order for τ = 6, but appeared to approach first-order for τ = 0.6, 0.06 for non-zero
Kn. Errors in computing slip length were generally less than those for the velocity overall.
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