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1 INTRODUCTION
The LS-STAG method [7] is a Cartesian method for incompressible flow computations in

irregular geometries which aims at discretizing accurately the flow equations in the cut-cells,
i.e. cells of complex polyhedral shape formed by the intersection of the Cartesian mesh with
the immersed boundary. In the three basic types of 2D cut-cells (pentagonal, trapezoidal and
triangular, see Fig. 1(a)), the discretization is designed such as the global invariants of the flow
(total mass, momentum and kinetic energy) are preserved at the discrete level. The LS-STAG
discretization in the cut-cells is consistent with the MAC discretization used in Cartesian fluid
cells, and has the ability to preserve the 5-point Cartesian structure of the stencil, resulting in
a highly computationally efficient method. We have successfully applied the LS-STAG method
to Newtonian flows at moderate Reynolds number in fixed and moving geometries [7], pseu-
doplastic flows [5], and viscoelastic flows [6]. In a recent paper [16], we have extended the
LS-STAG discretization for 3D configurations with translational symmetry in the z direction
(subsequently called 3D extruded configurations), where are only present the 4 types of cells
depicted in Fig. 1(b). In such geometries, only extruded 2D cut-cells are present, which enables
us to easily extend the principles of the energy-conserving discretization of Ref. [7] to the cut-
cells of Fig. 1(b) : the discretization of the continuity equation, pressure gradient, convective
fluxes, normal stresses are straightforward extensions of the 2D LS-STAG formulas.

However, the discretization of cell-face fluxes involving shear stresses such as ∂w/∂x and
∂w/∂y, which were absent from the 2D case, needed further attention. In effect, due to the
non-orthogonality of the cut-cells, the use of 2-point formulas for computing these fluxes proves
to be inaccurate. A way to improve the accuracy is to compute the whole velocity gradient at
the cut-cell faces, thus decomposing the flux as an orthogonal contribution (using a standard
2-point formula) and non-orthogonal correction (using data at cell vertices). The data at cut-
cell vertices are then interpolated from face-normal velocities and boundary conditions. This
gradient reconstruction technique is commonly denominated “secondary gradients" [14] in the
CFD community and “diamond cell method" [8] in the applied mathematics community.

This issue is also found for computing heat transfer problems with the 2D version of the
LS-STAG method. Hence, for the ease of discussion the diamond cell method will first be
described and analyzed for the diffusion fluxes of the heat equation, using various interpolation
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Figure 1: Cartesian cell and 3 basic types of cut-cells present in the LS-STAG mesh in 2D (a) and 3D extruded
(b) geometries. For the 3D extruded mesh, the velocities are discretized at cell faces, pressure and normal
stresses at cell center (•), shear stresses at edge centers : ∂u

∂y , ∂v
∂x (�), ∂u

∂z , ∂w
∂x (�) and ∂v

∂z , ∂w
∂y (�). For heat

transfer problems, the temperature is located at cell centers.

schemes (inverse distance weighting, least-squares, barycentric interpolation on triangulation).
The accuracy of the discretization will firmly be assessed on a series of benchmark problems
(Taylor-Couette flow, natural convection from a cylinder in an enclosure [9]) by inspecting the
formal order of accuracy and the heat flux distribution at the immersed boundary. Finally,
the diamond cell technique is employed for enhancing the accuracy of the shear stresses in 3D
extruded geometries. Comparison with body-fitted CFD codes will be provided in terms of
accuracy for benchmark flow past circular cylinder [3].

2 DISCRETIZATION OF DIFFUSION WITH THE DIAMOND CELL TECH-
NIQUES

The various discretization of diffusion that we consider are best detailed for the 2D temper-
ature equation :

∂T

∂t
+∇ · (vT )− κ∇2T = 0, (1)

where T is the temperature, v = (u, v) is the convection velocity and κ is the thermal diffusivity.
In cut-cell Ωi,j depicted in Fig. 2, whose volume is denoted Vi,j, the temperature Ti,j is located at
the centroid xG

i,j = (xG
i,j, y

G
i,j), and the faces of the cut-cell are decomposed as Γi,j = Γw

i,j ∪Γe
i,j ∪

Γs
i,j∪Γn

i,j∪Γib
i,j, where Γib

i,j denotes the solid part of the cut-cell, while the fluid faces are denoted
with the standard compass notations. The diffusive flux at the east face F d

e =
∫

Γe
i,j
κ∇T · ~ne dS

is discretized with midpoint quadrature, yielding :

F d
e
∼= θu

i,j∆yjκ
∂T

∂x

∣∣∣∣∣
e
, (2)

where θu
i,j ∈ [0, 1] is the fluid part of the face, such as θu

i,j∆yj = ‖xN − xS‖ in Fig. 2, and
∂T/∂x|e = ∇T |e · ne is the face-normal temperature gradient.

Several alternate formulas can be considered for computing ∂T/∂x|e. The simplest is the
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Figure 2: Relevant notations used for the discretization of the diffusion flux at the east face of cut-cell Ωi,j .

following two-point approximation :

∂T

∂x

∣∣∣∣∣
e

∼=
Ti+1,j − Ti,j

‖d‖
, (3)

where d = xG
i+1,j −xG

i,j is the vector joining the cell centroids. In the case where d and the face
normal vector ne = ex are colinear, formulae (2)-(3) recover the usual second-order Cartesian
discretization. However, for the cut-cell depicted in Fig. 2, the colinearity is lost and formula (3)
loses its accuracy as the angle α = mes(ex,d) becomes large. This issue, which is analogous
to the non-orthogonality of curvilinear and unstructured grids [15], has first been observed
in [17] for the LS-STAG method in 3D extruded geometries. In this reference, they proposed to
compute off-diagonal components of the velocity gradients of the Navier-Stokes equations with
a formula consistent with the pressure gradient discretization. For the case of the temperature
equation, this ad hoc formula amounts to :

∂T

∂x

∣∣∣∣∣
e

∼=
Ti+1,j − Ti,j

(1
2Vi+1,j + 1

2Vi,j)/θu
i,j∆yj

. (4)

However, the Navier-Stokes computations in [16] reported that the use of the above two-point
formulas diminishes the accuracy of the LS-STAG method, and that only a superlinear order of
convergence was obtained. The reason is that, when α 6= 0, the face-normal gradient ∂T/∂x|e
cannot be written as a function of Ti,j and Ti+1,j only, it also has a component tangential to
the face also. It is thus necessary to compute the whole temperature gradient, which reads in
the local basis of the east face :

∇T |e = ∂T

∂x

∣∣∣∣∣
e
ex + ∂T

∂y

∣∣∣∣∣
e
ey, (5)

since ne = ex in Fig. 2.
An elegant way to proceed is to approximate the gradient in the d direction as :

∇T |e ·
d

‖d‖
= cosα ∂T

∂x

∣∣∣∣∣
e

+ sinα ∂T

∂y

∣∣∣∣∣
e

∼=
Ti+1,j − Ti,j

‖d‖
, (6)

while the gradient tangential to the face is computed as :

∂T

∂y

∣∣∣∣∣
e

∼=
TN − TS

θu
i,j∆yj

, (7)
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Figure 3: Stencil used for the discretization of diffusion in cut-cell Ωi,j . In black: 5-point stencil for 2-point
discretization. For the DCM discretization with reconstruction at vertices (�), unknowns at the green centroids
are added to the stencil.

where TN and TS are located at the face endpoints xN and xS. Then, substitution of (7) in (6)
gives the following approximation of the face-normal gradient :

∂T

∂x

∣∣∣∣∣
e

∼=
Ti+1,j − Ti,j

‖d‖ cosα − TN − TS

θu
i,j∆yj

tanα, (8a)

with

‖d‖ cosα = xG
i+1,j − xG

i,j, tanα =
yG

i+1,j − yG
i,j

xG
i+1,j − xG

i,j

. (8b)

The first quotient in the RHS of (8a) is the orthogonal contribution of the gradient discretiza-
tion, while the second quotient is the non-orthogonal contribution that vanishes when d and
ne are colinear (α = 0), yielding a two-point approximation identical to (3) and (4). A simi-
lar procedure is employed to approximate diffusion at the immersed boundary. In the case of
homogeneous boundary condtions T = Tib, the non-orthogonal contribution vanishes and the
face normal gradient to Γib

i,j is :
∂T

∂n

∣∣∣∣∣
ib

∼=
Tib − Ti,j

∆ , (9)

where ∆ is the perpendicular distance from point xG
i,j to segment Γib

i,j.
The gradient formula (8) can also be derived by applying the Green-Gauss theorem in the

diamond-shaped control volume formed by joining the cell centers xG
i,j, xG

i+1,j and the face end-
points xN, xS, and is known as the diamond cell scheme. The diamond cell scheme has been
introduced in [12, 13, 11] for viscous compressible computations on unstructured meshes. Math-
ematical analysis has been performed in [8, 4] for diffusion equations. Furthermore, formula (8)
is equivalent to the over-relaxed approach for diffusion discretization presented in [15].

3 PRACTICAL IMPLEMENTATION OF THE DIAMOND CELL SCHEME
In formula (8a), vertex value at xN is obtained from the boundary conditions (TN = Tib),

while the value at xS need to be reconstructed from neighboring cell-centered values :

TS ∼=
1∑

k,l=0
ωi+k,j−1+l Ti+k,j−1+l. (10)
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Bertolazzi &Manzini [4] reviewed various possibilities for defining the reconstruction weights ωi,j.
Basic choices includes the inverse-volume interpolation, with weights based on the cell volumes :

ωi,j = Vi,j

1∑
k,l=0

Vi+k,j−1+l

, (11)

and the inverse-distance interpolation, with weights :

ωi,j =
‖xG

i,j − xS‖−p

1∑
k,l=0
‖xG

i+k,j−1+l − xS‖−p

, (12)

where p ≥ 1 is a given exponent (p = 1 corresponds to the Euclidian distance).
These two choices of weights give exact reconstruction for constant functions only, reducing

thus the formal accuracy of the DCM formula to first-order only. In [4], an algorithm is
discussed to reach second-order accuracy, by altering the values of the weights in order to fulfill
the condition for exact reconstruction of linear functions. Note however that this algorithm
involves centroid selection, solution of linear systems, and the resulting set of weights is not
unique.

Second-order accuracy can also be reached by using least-square weights that minimize the
reconstruction of linear functions. This least-square reconstruction is described in [11] for
the solution of the compressible Navier-Stokes equations on unstructured grids, and has been
analyzed in [8, 4] for model diffusion problems. However, our numerical experiments (see next
section) showed that negative weights may appear for some cut-cells, giving rise to oscillatory
solutions. For this reason, we have implemented a reconstruction based on triangulation [1] that
ensures positivity of the weights. Out of the 4 triangles formed by the neighboring centroids of
a given vertex, we select the triangle of largest minimal angle that contains the vertex. Value
at the vertex is then obtained by barycentric interpolation.

In the LS-STAG code, diffusion is treated with implicit time-integration method, so the
use of the DCM with vertex reconstruction has the effect to increase the stencil of the linear
systems. A shown in Fig. 3, the DCM discretization needs to be applied to the four fluid faces
of cut-cell Ωi,j, yielding a 9-point stencil instead of the standard 5-point stencil for 2-point
discretization. Note that DCM needs only to be applied to neighboring cells of the immersed
boundary. In the vast majority of the computational domain, mesh is orthogonal and standard
5-point stencil is recovered. The linear systems are solved with the HYPRE library (V2.10)
using the semi-structured-grid system interface [10].

4 NUMERICAL RESULTS
The diamond cell method (8) (labeled herafter DCM) is implemented in the 2D and 3D-

extruded LS-STAG code for the discretization of face-normal gradients in the temperature and
Navier-Stokes equations. First, results are presented for the 2D temperature equation with
no coupling with the Navier-Stokes equations. For interpolation at cell vertex, the following
reconstruction schemes are compared :

− LS-STAG/DCM-ID1: first-order inverse distance weights (12) with p = 2,
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− LS-STAG/DCM-ID2: second-order inverse distance weights (with p = 2) using the algo-
rithm discussed in [4],

− LS-STAG/DCM-LSQ: least-square weights [11],
− LS-STAG/DCM-TRI: barycentric interpolation on triangulation.

The performance of DCM is also compared with the 2-point gradient (4), which is labeled
LS-STAG/2PT. For all methods, Dirichlet boundary conditions are imposed with Eq. (9).

Subsequently, the temperature equation is coupled with the Navier-Stokes equations for
computing 2D natural convection problems. The purpose is to assess the ability to compute
accurately local heat flux at immersed boundaries, which is a sensible quantity since it involves
the temperature gradient at the sold face of cut-cells. Once the DCM has been assessed on 2D
flows, the DCM is applied to the Navier-Stokes equations in 3D-extruded geometries to enhance
the discretization of isothermal incompressible flows computed with the LS-STAG method with
2-point discretization reported in [16].

4.1 TEMPERATURE CONDUCTION IN TAYLOR-COUETTE CELL
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Figure 4: Maximal error on the temperature versus grid size h for the pure conduction test case. At left : on
90% of the domain, at right : on the whole domain.

First the spatial accuracy of the various variants of DCM is assessed on the test case of pure
thermal conduction (Eq (1) with v = 0) between concentric cylinders of diameters r = R1 and
r = R2, where a temperature difference ∆T = T2 − T1 is applied. The steady exact solution is
purely radial :

Tex(r) = ln (r/R2)
ln(R1/R2)(T1 − T2) + T2. (13)
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For the numerical experiments, we set ∆T = 1K and employ the same geometry (R1 = 1m
and R2 = 4m) and uniform meshes (of size ∆x = ∆y = h) considered in [5] for non-Newtonian
computations with the LS-STAG method.

For the various discretization of the face-normal temperature gradient, Fig. 4 compares the
maximal error :

E∞h (T ) =
max

CVs Ωi,j

∣∣∣Ti,j − Tex(xG
i,j)
∣∣∣

max
CVs Ωi,j

∣∣∣Tex(xG
i,j)
∣∣∣ (14)

obtained on the whole computational domain and away from the immersed boundary. As
expected, the 2-point method gives the worst accuracy, measured as first-order only. The
errors given by all DCM variants are more than one decade lower, highlighting the benefits
of this gradient computation. Note however that the errors of DCM-ID1 quickly saturates
to a first-order rate when the grid size is reduced, due to the low accuracy of the vertex
reconstruction scheme. All other reconstruction schemes (DCM-ID2, DCM-LSQ, DCM-TRI)
gives comparable second-order accuracy. For these methods, it is worthwhile to note that the
errors on 90% and 100% of the domain are of same magnitude, showing that the discretization
in cut- and Cartesian cells has a comparable accuracy.

4.2 NATURAL CONVECTION FROM A CYLINDER IN AN ENCLOSURE

Figure 5: Sketch of the computational domain for the natural convection test-case (with L = 1m, TH =
1K, TC = 0K), curvilinear mesh L1 and Cartesian mesh M1 of size 32×64 used respectively for the FLUENT c©

and LS-STAG computations.

The second test-case concerns a fluid flow and heat transfer problem in complex geometries,
for which Demirdžić et al [9] published accurate benchmark solutions. This test case concerns

7



B. Portelenelle, O. Botella and Y. Cheny

natural convection of a heated cylinder placed eccentrically in an inclosure (test C4 in [9]),
where the heat equation (1) is coupled with the Navier-Stokes equations in the Boussinesq
approximation. The computational domain and boundary conditions are shown in Fig. 5 (left),
with gravity acting in the downwards direction: since the solution possesses a vertical symmetry
at x = 0, only half of the geometry is considered. As in [9], the dimensions and fluid properties
are: enclosure length L = 1m, density ρ = 1 kg ·m−3, gravity constant g = 1m · s−2, thermal
expansion coefficient β = 0.1K−1, thermal diffusivity κ = 10−4 m2 · s−1, dynamic viscosity
µ = 10−3 kg · m−1 · s−1 and temperature difference TH − TC = 1K, that set the Rayleigh and
Prandtl number respectively as:

Ra ≡ βρgL3

µκ
(TH − TC) = 106, (15)

Pr ≡ µ

ρκ
= 10. (16)

The purpose of these computations is to assess the ability of the LS-STAG/DCM method to
compute accurately gradients at the immersed boundary, in the present case the average Nusselt
number on the half-cylinder of length |Γib| :

Nu = 1
|Γib| (TH − TC)/L

∫
Γib
∇T · n dS, (17)

and the distribution of the local Nusselt number along the half cylinder, which is calculated at
the center of the solid boundary of the cut-cells using formula (9).

The LS-STAG computations are performed on a series of refined meshes M1-M5 of square
uniform Cartesian cells, where the coarsest mesh M1 represented in Fig. 5 (right) has 32× 64
cells and the finer meshes are obtained by doubling the number of cells in each direction, such
as the finest mesh M5 has 512 × 1024 cells. For comparison purpose, we have also computed
solutions with the commercial CFD package FLUENT c© (V15.07), on a series of curvilinear
meshes L1-L5 (see Fig. 5 (middle)) of same number of cells, with cell clustering near the heated
cylinder. The FLUENT c© computations have been performed with the pressure-based solver
with the steady SIMPLE algorithm, with second-order spatial discretizations: QUICK scheme
for convection discretization, Green-Gauss node-based interpolation for gradient calculation,
and body-force weighted pressure interpolation.

Fig. 6 shows the convergence of the average Nusselt number as the grid is refined. Irre-
spective of the gradient discretization scheme, all LS-STAG variants converge to the same
grid-independent value at a similar rate. It is worthwhile to observe that on the 2 coarsest
mesh, the FLUENT c© computations are more accurate than LS-STAG. This is most certainly
due to the high orthogonal quality of the curvilinear meshes near the circular cylinder.

Fig. 7 displays the distribution of the local Nusselt number along the immersed cylinder
obtained for the LS-STAG and FLUENT c© computations on the M4/L4 mesh, along with the
reference results [9]. In order to quantify the influence of the cut-cells shape on the accuracy of
the results, the LS-STAG profiles are colorized with the volume-change ratio of cut-cell Ωi,j:

RVi,j = min
(k,l)∈Nb

Vi,j

Vk,l

, (18)

where Nb refers to the neighboring cells that share a face with Ωi,j (solid cells are excluded).
For each cut-cell RVi,j ∈ ]0, 1] since at least one neighboring cell is totally fluid, and a value
close to 0 indicates a cut-cell of small size compared to the Cartesian cells.
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Figure 6: Convergence of the average Nusselt number with respect to the number of fluid cells.

First it can be observed that the LS-STAG method with 2-point gradients gives a highly
oscillatory profile, confirming the inaccuracy of this approximation of diffusion. The use of
the diamond scheme reduces the level of oscillations for the first-order method DCM-ID1 and
for DCM-LSQ. For both methods, the oscillations are clearly located in cut-cells with small
volume-change ratio RVi,j, indicating inaccurate approximation in small cut-cells. In contrast,
the profiles obtained with the other second-order methods (DCM-ID2 and TRI) are virtually
free of any oscillations, and perfectly match the reference results.

As a conclusion, these computations show that accurate solutions can be achieved with the
DCM discretization. Nonetheless, the accuracy of the DCM approximation is highly dependent
on the interpolation scheme that is used, otherwise inaccurate results are encountered in the
smaller cut-cells. These results show that the second-order methods DCM-ID2 and DCM-TRI
stand as the best discretization methods, yielding indistinguishable results on the local Nusselt
distribution. Owing to the simplicity of the triangular interpolation compared to the inverse
distance interpolation of second order, the DCM-TRI variant is selected for implementation in
the 3D-extruded code.

4.3 ISOTHERMAL FLOWS IN 3D EXTRUDED GEOMETRIES
The last test-case concerns the unsteady laminar flow past a circular cylinder in a confined

square duct, for which accurate benchmark results with unstructured solvers are reported in [3].
The flow unsteadiness is induced by a time-varying inflow boundary condition, yielding a time-
periodic Reynolds number Re ∈ [0, 100]. This benchmark flow has previously been performed
in [16] with the LS-STAG method for 3D extruded geometries, using 2-point formulas for the
diffusive fluxes of the Navier-Stokes equations.

A sketch of the velocity staggering in extruded cut-cells is shown in Fig. 8 : it is clearly seen
that diamond cell discretization is needed for enhancing the discretization of for the off-diagonal
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Figure 7: Profiles of the Nusselt number along the half cylinder for the various discretization of diffusion in
the LS-STAG method, and comparison with the FLUENT c© computation and reference results of Demirdžić et
al [9]. The profiles are colorized with respect to the volume-change ratio RVi,j (18) of the cut-cells.

components ∂w/∂x and ∂w/∂y of the diffusive fluxes of the Navier-Stokes equations. Due to the
extrusion in the z direction, the other velocity gradients are accurately computed with 2-point
formulas [16]. Note also that due to the staggering of the discrete velocities, the discretization
of ∂w/∂x and ∂w/∂y involves co-planar unknowns (on planes of constant index k), such that
only the 2D DCM formula (8) is needed.

Table 1 compares the results obtained on a series of refined meshes (500,000 to 3M cells) with
an unstructured CFD solver (FLUENT c©), the LS-STAG solver with 2-point discretization [16]
and the present DCM discretization. We refer to [16] for a complete description of the geometry,
boundary conditions, meshes and discretizations used by both solvers. As observed in [16], the
2-point discretization of the LS-STAG solver gives only monotonic convergence for the lift
quantities, while the drag quantities fails to convergence. In contrast, the DCM discretization
show a dramatic increase in the accuracy of the LS-STAG discretization, yielding a smooth
convergence for all force coefficients, with an accuracy comparable to the FLUENT c© solver on
all 3 grids.
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Figure 8: Staggered mesh for 3D extruded geometries in the z direction, and location of the off-diagonal
components of ∇w.

Solver Mesh % Error % L2 Error
CDmax CLmax CLmin CD CL

LS-STAG/2PT [16]
M2 3.72 11.05 36.61 3.74 48.06
M3 2.23 2.96 18.07 2.42 16.94
M4 2.96 0.49 10.02 3.05 10.22

LS-STAG/DCM-TRI
M2 1.31 6.99 34.00 1.48 41.91
M3 0.63 0.72 10.78 0.65 10.06
M4 0.24 0.06 5.42 0.22 5.46

FLUENT c©
L2 2.35 4.40 16.29 2.11 17.03
L3 0.96 2.16 10.96 0.81 10.01
L4 0.25 0.08 2.89 0.21 2.67

Table 1: Relative errors (in percent) of the force coefficients with respect to the reference solution [2] and L2
errors for one-half period of the simulation (t ∈ [0, 8s]).

5 Concluding remarks
This paper has presented a progress report on the application of the diamond cell method

(DCM) for improving the accuracy of diffusion in cut-cell methods. The DCM is employed for
cell-centred data (temperature in 2D) and face-centred data (Navier-Stokes equations in 3D-
extruded geometries), which illustrates the versatility of the approach, that can be applied to
other cut-cell methods than the LS-STAG method. One of the major findings is the dependence
of the accuracy on the reconstruction scheme used for data interpolation. The use of barycentric
interpolation allowed us to obtain local accuracy in cut-cells comparable to the one reached
in Cartesian cells, irrespective of the size and shape of the cut-cell. Progress is on the way to
employ DCM for full 3D computations with the LS-STAG method.
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