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In this contribution a procedure for continuous reconstruction of system input force, along with
estimation of system states is presented. For the sake of online implementation, a sliding time-
window is adopted. The system input force is initially recovered from acceleration response
over a finite-length time-window, using regularization technique. Afterwards, the recovered in-
put force is, if necessary, fine-tuned, and the system states are estimated by application of the
Kalman filtering, in order to deal with measurement uncertainty and unknown actual initial con-
ditions. The successive application of regularization and Kalman filtering removes the obstacle
of the unknown initial conditions of the first time- window. The initial conditions of the next
time-windows are, in fact, the system states at the end of the previous time step. In order to
resolve response data incompleteness, the problem is projected onto modal coordinates, while
system modal parameters and mode shapes can be achieved by means of output-only techniques.
The application of the proposed method demonstrates the capability of the proposed method in
continuous identification of system input and states of a weather station tower.

1 Introduction

The input and state estimation problem in structural dynamics is expressed as the load (i.e.
force) and response (i.e. states) estimation, where the load measurement is either difficult or
sometimes impossible. In contrast, the structural response, can be measured at a much lower
cost. Structural acceleration among other response types is the commonly measured response
quantity in the experimental structural analysis due to the accuracy and ease of measurement.
However, because of the computational and economical consideration, normally just a limited
number of sensors (mostly accelerometer) can be mounted in the practice. As a consequence,
there is usually an incompleteness in the response data in the sense of number and response
type. The knowledge on the acting dynamic load, such as the time history itself or its power
spectral density, can be considerably useful in many applications including structural reliability
analysis using statistics of the input force [1] and structural health monitoring [2].

In many studies the applied load is reconstructed in time domain through direct or iterative reg-
ularization methods. Tikhonov and truncated singular value decomposition are the well-known
examples of the former [3, 4], while conjugate gradients and dynamic programming belong to
the latter [5, 6]. The concept of deconvolution through different regularization schemes is still
a current topic in system input identification and, researchers have been trying to improve the
existing methods in this context. For example [7], recently introduced the idea of sparse decon-
volution, where input force consists of sparse impact signals. Kazemi and Bucher derived an
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impulse response matrix, based on the assumption of the linear evolution of the force signal in
order to reduce the measurement sampling rate and accordingly the size of the inverse problem
[8]. They also verified their method through field experiment in cross-examination with problem
simulation [9]. Bernal and Ussai investigated the stability condition of the sequential deconvo-
lution, based on a sliding time-window, that can be implemented online [10]. This method has
an interesting underlying, but nonetheless it is applicable if either the frequency band is limited
to avoid ill-conditioning and the system initial conditions for the first time-window must be
known and for preventing the error cumulation in the system states, the time-window speed has
to be selected properly.

One of the first investigations, which used a Bayesian observer (Kalman filtering) was used
for the inverse heat conduction problem was [11]. This technique was later implemented for
input force estimation in structural dynamics (e.g. see [12]), given the displacement response
data. However the displacement response cannot be readily measured in practice. Since then,
the joint input-state estimation in structural dynamics experienced significant progress. For in-
stance, a joint input-response estimation scheme was introduced based on minimum-variance
unbiased estimation [13]. Eftekhar Azam et.al. proposed the dual Kalman filter (DKF) scheme
that overperforms the AKF and minimum-variance unbiased estimation by implementing a dou-
ble stage input-states estimation [14, 15]. Within another approach, Nates et.al. suggested to
enhance the measured acceleration response by addition of the dummy displacement data, in-
vestigating the observability issues of AKF [16]. The identifiably and stability conditions, when
only acceleration response is measured, was extensively studied by [17]. These techniques es-
tablished a breakthrough in the input-states estimation problem. However they cannot be either
implemented online continuously over time as depending on the particular technique an a-priori
information on the input force is required or displacement signal for the sake of filter stability
is demanded.

The developed method in this study establishes a reconciliation between the regularization and
the classical Kalman filtering techniques. Such a method can be implemented in an online
manner with a time delay of order of some seconds. In order to implement this method merely
the modal properties of the system are needed. The proposed method can identify the system
inputs and estimates the states without a-priori knowledge on the inputs and initial conditions,
only using the acceleration data.

2 Mathematical formulation and procedure algorithm

Consider the classically damped equations of motion for a multiple degrees of freedom linear
system [18]:

mü(t)+ cu̇(t)+ku(t) = bp(t) (1)

In the above relation u, m, c, k denote the displacement, mass, damping and stiffness matrices
of the system, and p is the acting dynamic force. The influence input matrix b selects the loaded
degrees of freedom. The overhead dot notation represents the time derivative. The state-space

representation of Eq. 1 can be derived by introducing the state variables x(t) =
{

u(t)
u̇(t)

}
,

ẋ(t) = Ac x(t)+Bc p(t) (2)

in which:

Ac =

[
0 I

−m−1 k −m−1 c

]
, Bc =

[
0

m−1 b

]
(3)
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The system response quantities gained by measurement are collected in the measurement vector:

d(t) = Sa ü(t)+Sv u̇(t)+Sd u(t) (4)

Using the state variables in the measurement vector and considering Eq. 1 together with the
output influence matrices for acceleration Sa, velocity Sv and displacement Sd, yields:

d(t) = Cx(t)+Dp(t) (5)

while:

C =
[

Sd −Sa m−1 k Sv −Sa m−1 c
]
, D = Sa m−1 b (6)

Solving Eq. 2 for x(t), given the initial conditions x(t = 0), renders the continuous-time solution
for the system states:

x(t) = eAc(t−t0) x(0)+
∫ t

0
eAc(t−τ)Bc p(τ)dτ (7)

The first and second parts of the solution pertain to the transient response, caused by the initial
conditions, and steady state response to the dynamic loading, respectively. The recursive form
for the above solution is obtained by discretization in time. This solution together with the
discretized measurement vector renders the discrete-time model of the system,

xk+1(t) = Axk(t)+Bpk(t) (8a)
dk+1 = Cxk +Dpk(t)+ εεε (8b)

where:

A = eAc(∆t), B = [A− I]Ac
−1 Bc (9)

The above model can take into account the measurement noise εεε in terms of Gaussian white
noise process with the covariance matrix Rεεε = E[εεε εεεT ]. If the system input force is known,
then Kalman filtering can minimize the mean square error in the estimated system states in the
presence of measurement noise [19].

The input-output relationship can be established based on the Eqs. 8a and 8b.

d[0,n] = r0 x0 +hp[0,n] (10)

The matrix h is referred to as the impulse response matrix (IRM). The system input can possibly
be recovered from the steady state response, provided the initial conditions response is known
and subtracted from the measured response data. This is a restricting condition in practice,
though. Classically, the mathematical problem of solving Eq. 10 for the input is sorted among
the ill-posed problems. There exists plenty of different techniques for this purpose. In our
proposed procedure, any regularization scheme might be used for the sake of continuous input
reconstruction. However for application in this study, it is essential that the regularization extent
can be automatically and actively determined, too. A well-known, and perhaps the most famous
approach in this context is the so-called Tikhonov regularization,

argmin
p[0,n]

{∣∣∣∣b[0,n]−hp[0,n]
∣∣∣∣2

2 +λ
2 ∣∣∣∣p[0,n]

∣∣∣∣2
2

}
(11)
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where the steady state response equals b = d̃[0,n] − r0 x0 and λ stands for the regularization
parameter.

If the system response is measured only at a limited number of degrees of freedom and the
number of unknown input forces exceeds that of the measurements, then system order reduction
techniques (See e.g. [20]) or modal truncation can be applied to make the system of linear
equations in Eq. 10 determined. In this contribution the equations of motion are projected onto
the modal coordinates. As such the system’s modal input and states will be estimated. This idea
is also useful, if it is to study the destructive vibration modes. Note that, the modal parameters
and mode shapes are also required to generate the IRM and modal responses. Therefore, an
operational modal analysis (OMA) technique can be employed for this purpose. The readers
are referred to the author’s works for more information [8, 9].

The system input and states are continuously reconstructed according to a moving time-window
with a predefined length. A key point of the continuous input-output reconstruction is the
automatic determination of the optimal regularization parameter, corresponding to each time-
window. This is essential to resolve the effect of unknown initial condition. One of the tech-
niques for determination of the optimal regularization parameter is using the L-curve. In each
time-window, the regularized solution of the input is inserted into a double Kalman filtering
scheme for fine-tuning of input force and system states estimation. Our preliminary simulation
results identifies two sources of error in the inverse input solution. Firstly there exist noise
magnification in the higher frequencies which can be suppressed by fine tuning of input force.
The initially identified input is fine-tuned by assuming the input as a zeroth order random walk
stochastic process. Another discrepancy is observed in terms of low frequency deviations due to
use of acceleration data. However normally the measured response signal is high-pass filtered
over the low-frequency range, which resolves such a problem.

The proposed algorithm for the automated and continuous input/state estimation is briefly pre-
sented in Table 1.

3 Results

The performance of the proposed method is evaluated for reconstruction of the fluctuating part
of the modal wind load and system states of a mast structure. The case study is a guyed mast,
serving as a weather station tower. The structural details of the mast side view and the sketch
of its finite element model (FEM) is represented in Fig. 1. The mast structure consists of three
parts, each of which is made of three main legs with the horizontal and diagonal braces. The
guys connected to the third part of the mast, also provide lateral support for the structure from
three sides. The full-scale finite element model of the structure, consisting of Euler-Bernoulli
beams, is established in slangTNG. The structural damping is set up according to Rayleigh
damping, such that the damping ratio of the first two modes are identically set to 1%. The first
three eigenfrequencies of the structure together with the damping ratios are given in Table 2..

The wind loads are derived from the linear fluctuating wind pressure, and applied in two in-
plane perpendicular directions along the mast, given a wind speed power spectral density (PSD)
function. The fluctuating wind speed along the mast is simulated as an 18-variate single dimen-
sional stationary random process, independently in each direction. The resultant fluctuating
wind pressure components associated with the wind speeds, acts on the projected exposed areas
of the mast elements, which renders the exerted wind load. The reference mean wind speed
at the height of 10 m was taken equal to 10 ms−1, and the frequency band of the wind speed
spectrum was set to [0.3 : 150] Hz. The acceleration responses were obtained from the sensor
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Table 1: Proposed algorithm

1) Initial input reconstruction by Regularization:
Solve Eq. 11 for p̃[0,n]
2) Input fine tuning and state estimation:
Initialize the time-window double-step Kalman filter:
Initial error covariance matrix of input and states and

lpS−
0 ,

lxS−
0 :

Set positive random variables for l = 0
Initial values for input and states:

lp0 = p̃0
lx0: Set random variables for l = 0

• Correction:
lp+

k+1 =
lp+

k+1 −
lpK+

k+1(
lpdk+1 − lpC lp−

k+1)
lx+k+1 =

lx+k+1 −
lxK+

k+1(
lxdk+1 − lxC lx−k+1)

K+
k+1 denotes the Kalman gain

• Prediction:
lp−

k+1 =
lp+

k
lpS−

k+1 =
lpS+

k + lRp, lRp = E[θθθ p θθθ
T
p ] = E[p̃[0,n] p̃T

[0,n]]
lx−k+1 = A lx+k +B lp+

k
lxS−

k+1 = A lxS+
k AT + lRεεε , lRεεε = E[εεε εεεT ]: here assumed zero

Sk+1 denotes the covariance of error

3) Updating initial conditions for the next time-window
l+1xS0 =

lxSn, l+1x0 =
lxn

l+1pS0 =
l+1pSn, l+1p0 =

lpn

4) Proceed to the next time-window l = l +1:
Repeat over the previous steps

{!p[0, n]

→

!

k =
0

n→

l

l +1

!

l+1xS0 =
l xSn

l+1x0 =
lxn

!

→

!

k =
0

n

1
2

3
4 l + 2

t

!

!

l −1
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Figure 1: Sketch of the instrumented guyed mast case study. Mast side view and sensor
configuration (left), picture of FEM (right)
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Table 2: Natural frequencies and damping ratios derived from mast finite element model

Mode 1 2 3
Eigenfrequency (Hz) 3.031 3.227 3.337
Damping ratio (%) 1.00 1.00 1.00

configuration along the mast at seven locations, as marked by [S1 : S7] in Fig 1. The response in
two horizontal directions was measured at [S1,S3,S5,S7], while at the rest of the locations the
response was additionally obtained just in one direction. The main interest is to implement the
proposed method for input reconstruction in the frequency range of the first three modes, that
are more relevant to wind excitation. The operational modal analysis is performed by frequency
domain decomposition (FFD) method [21].

The OMA results shows that the first mode was weakly excited, while the second mode can be
properly identified. Thus for the sake of comparison, the presented algorithm is evaluate for the
first and second modes. The natural frequencies of the first and second modes are identified to
be 3.026 and 3.227 Hz. The damping ratio of the first and second modes are equal to 1.05% and
0.96%, respectively. The sampling rate was taken equal to 300 samples per second. The length
of time-window is set to 10 seconds, in order to increase the stability of the reconstructed input
force in lower part of the frequency band. Figs. 2 and 3 illustrate the estimated input modal
wind forces and system states from the acceleration response with 3% noise level. For the first
mode, there are two points that should be pointed out. Firstly, there is a constant drift between
the power spectrums of the reconstructed and actual values. This arises from the fact that this
mode is weakly excited, and thus its corresponding decomposed modal acceleration has higher
power that the actual oner, over the frequency range. Secondly, this mode seems to be highly
coupled with another mode around 11 Hz. Since such a mode was not taken into account in
the modal decomposition, its contribution appears as a fictitious peak in the reconstructed input
force. These two issues are the source of the inaccuracy in the time series of the reconstructed
input wind force in the first mode. However, these shortcomings are associated with the system
identification. On the other hand, the input wind force of the second mode only suffers the
contribution of the coupled mode at 14 Hz, which seems to be negligible according to the
input force signal in the time domain. In both modes, the very low frequency components (ca.
6 0.35Hz) can not be reconstructed well. Nevertheless, one can increase the time-window
length at the expense of higher computational cost, but the question is how important could be
the signal resolution in the very low frequencies for a specific purpose.

4 Conclusion

The independence of the proposed method from any a-priori knowledge on the system model,
states and more importantly the input force, makes the method substantially attractive for prac-
tical applications. To the knowledge of the authors, this is for the first time illustrated that how
the issue with the unknown initial conditions can be coped with the joint application of the
regularization and Kalman filtering. The utilization of L-curve curvature makes the proposed
procedure able to estimate system input/states automated and consequently online. The pro-
posed method was applied for the reconstruction of modal input loads and system responses of
a weather station tower under wind excitation. The results evaluation demonstrates the capabil-
ity of the proposed method in continuous identification of system input and states.



7

Time [s]
0 10 20 30 40 50 60 70 80

Fo
rc

e 
[N

]

-2

-1

0

1

Time [s]
0 10 20 30 40 50 60 70 80

Fo
rc

e 
[N

]

-2

-1

0

1

Frequency [1/s]
10-1 100 101 102

Fo
rc

e 
PS

D
 [

s(
N

2 )]

10-10

10-5

100

Frequency [1/s]
10-1 100 101 102

Fo
rc

e 
PS

D
 [

s(
N

2 )]

10-10

10-5

100

Figure 2: Comparison of reconstructed and actual wind load inputs of mast structure. Input
force time histories (top), input force PSD (bottom). Left: first mode, right: second mode.

Actual input (solid green), fine-tuned reconstructed input (dashed red)

Figure 3: Comparison of estimated and actual system states of mast structure under wind load.
Left: first mode, right: second mode. Actual state (solid green), states by fine-tuned input

(dashed red)
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