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Abstract. The thermal performance of heat sinks is enhanced, in the present paper,
by applying a material distribution topology optimization approach. We consider solid
structures enclosed in three dimensional steady-state conductive differentially heated cav-
ities. The algorithm iteratively updates the geometry of a heat sink, relying on gradient
information. The gradient information are computed using adjoint sensitivity methods,
combined with high-order accuracy direct numerical simulations. A complete conjugated
problem is solved, in which we describe the effect of the solid material on the surround-
ing flow through the action of a Brinkman friction term in the Navier–Stokes equations,
and we map the material distribution function onto the thermal conductivity and heat
capacity in the energy conservation equation. Additionally, advanced filtering techniques
are applied for enforcing a desired length scale to the solid structure. The success of the
method is presented with a thorough physical investigation of the optimal results, which
deliver a substantial increase of the heat transfer.

1 INTRODUCTION

Optimization of natural convection cooling systems is a major engineering challenge of
the present times. Because of their high reliability and durability, they can be employed
for many industrial applications. One of the most advanced techniques for optimizing such
systems is to act on the topology of the heat sink, that is, how its geometry is connected,



Clio Saglietti, Eddie Wadbro, Martin Berggren and Dan S. Henningson

thus optimizing the thermal performance by canalizing the surrounding flow. Bendsøe
and Kikuchi1 introduced a method for optimization of load carrying elastic structures
that has become influential also for other applications,2 the material distribution topology
optimization method. This approach aims to optimally distribute in space a composite
material function. Each point of the domain is a degree of freedom, thus there are no a
priori restriction on the optimal topology.
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Figure 1: Sketch of the
computational domain (Ω:
−0.5 ≤ x ≤ 0.5, −0.5 ≤
y ≤ 0.5, and −0.5 ≤ z ≤ 0)
and of the optimization do-
main (in gray ΩO: −0.46 ≤
x ≤ −0.25, −0.25 ≤ y ≤ 0.25,
and −0.25 ≤ z ≤ 0). On the
cold wall, Γ1 (in blue), the ob-
jective function J is evalu-
ated. Against the warm wall,
Γ2 (in red), a solid box (in
black Ωs) connects the warm
wall to the optimization do-
main. The rest of the vol-
ume is fluid (Ωf ). The de-
sign function ρ may not vary
in Ωf ∪ Ωs. Symmetry side,
Γ3: green contour.

Optimization of simple conduction problems was the first
form of topology optimization for enhancing thermal perfor-
mances.2 In the following years, more advanced studies have
included convection contributions. At the beginning, convec-
tive effects were just treated as a boundary condition;3 later,
the entire conjugate heat transfer has been considered. The
first attempts were limited to Stokes problems,4,5 but more re-
cently, the feasibility of the method has been proven on Navier–
Stokes problems.6–8 There are various ways of describing the
embedded heat sink. One way is to use a level set function,9,10

another is the immersed boundary method.11 In the second
case, the momentum conservation law is solved in the whole
domain, but the velocity is penalized inside the solid structure
using a Brinkman friction term.12 Moreover, the material dis-
tribution function is also mapped to the thermal properties in
solving the energy conservation law.13

In the present paper, we limit the study to heat sinks
confined inside a three dimensional steady-state conductive
differentially heated cavity, in which the buoyancy (under
Boussinesq approximation) drives a swirling laminar convec-
tive flow.14 We measure the enhancement of the heat sinks’
thermal performance by evaluating the heat flux through the
cold side of the cavity. For identifying the optimized de-
sign, the material distribution topology optimization method
is combined with high-order accuracy steady-state direct nu-
merical simulations (DNS) computed with the spectral element
code Nek500015 and the BoostConv algorithm.16 At each com-
putational point in the domain, a material indicator function
ρ̃ can describe the fluid (ρ̃ = 1) or the solid (ρ̃ = 0). The design function is allowed to
attain values in the continuum ρ̃ ∈ [0, 1] in order to allow for gradient-based optimization
algorithms. Penalty together with advanced filtering techniques17 are employed in order
to promote sharp interfaces and at the same time avoid small design features and mesh
dependencies.

The paper is organized as follows. The problem is presented in Section 2 by outlining
the governing equations and explaining how they are numerically solved. In Section 3
the filtering is described and in Section 4 the geometrical specification is given and the
optimization algorithm is described. A thorough physical interpretation of the results
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follows in Section 5, just before the conclusions.

2 PROBLEM PRESENTATION

The enhancement of the thermal performance of heat sinks is the primary focus of the
present paper. We rely on the high-order accurate spectral element code nek5000 together
with a material-distribution topology optimization algorithm to numerically generate an
effective geometry for a vertical heat sink enclosed in a conductive differentially heated
cavity. The heat sink, attached to the warm wall of the cavity, is optimized for maximizing
the heat transfer through the cavity, that is, the measure of the heat flux through the
cold wall.

2.1 Physical specification

We describe the conjugate heat transfer problem originated by the interaction between
an ideal Newtonian fluid and a solid structure. The incompressible flow under study is
driven by natural convection (buoyancy force) and cools down the heat sink attached
to the warm wall of the cavity. We limit the study to steady state conditions that are
representative of a flow without instabilities and turbulence. We solve thus the steady
state Navier–Stokes equations to evaluate the contribution of the thermal convection to
the overall heat transfer, and we solve the energy conservation equation in the whole
domain for computing the temperature distribution.

The chosen non-dimensionalization18 relies on the Rayleigh and the Prandtl numbers

Ra =
ρ∗C∗fβ

∗|g∗|∆T ∗x∗3

µ∗K∗f
, P r =

µ∗C∗f
ρ∗k∗f

, (1)

respectively, in which the reference length, velocity, temperature, pressure, and time are

x∗ref = L∗, u∗ref =
k∗f
√
Ra

C∗fL
∗ , θ∗ref = ∆T ∗, p∗ref = ρ∗u∗ref

2Pr, t∗ref =
L∗

u∗ref

, (2)

respectively. Additionally, k∗ defines the thermal conductivity; C∗ the thermal heat
capacity (the subscript s and f indicate solid and fluid, respectively); ρ∗, µ∗, and β∗ are
the density, the viscosity, and the thermal expansion coefficient of the fluid, respectively.
All dimensional variables are identified by a star, L∗ is the cavity length, ∆T ∗ is the
temperature difference with respect to the ambient, and eg = −g∗/|g∗| is the unit gravity
vector. As the dimensionless governing equations

1

Pr
(u · ∇)u− 1√

Ra
∇2u +∇p− egθ + χ(ρ̃)u = 0,

C(ρ̃)(u · ∇)θ − 1√
Ra
∇ · k(ρ̃)∇θ = 0,

∇ · u = 0,

(3)

show, under the Boussinesq approximation, the flow is driven by temperature variations.
Moreover, we model the effect of the solid structure on the fluid flow as the action of a
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Brinkman friction term12 in the momentum equations. The amplitude of the Brinkman
force χ(ρ̃) has a direct dependence on the material indicator function ρ̃ that is continuously
defined in the whole domain (solid: ρ̃ = 0; fluid: ρ̃ = 1). The function ρ̃ is, in turn,
obtained from the design function ρ through the filtering operation described in Section 3.
Also in the temperature equation, we rely on ρ̃ for defining its coefficients,13 the adjusted
non-dimensional heat capacity C(ρ̃) and the non-dimensional thermal conductivity k(ρ̃).
The interpolation of the coefficients is done using SIMP-type functions:2

χ(ρ̃) = χ(1− ρ̃)p, C(ρ̃) = 1− (1− ρ̃)p, k(ρ̃) =

(
ks
kf
− 1

)
(1− ρ̃)p , (4)

where p is the exponent that characterizes the steepness of the interpolation. The choice
of having an adjusted thermal heat capacity legitimates the use of the Brinkman friction
term. Indeed, when using an immersed boundary method (IBM), there is inevitably a
small but nonzero velocity also in the solid.11 Since our analysis focuses on heat transfer
optimization, we set to zero the dimensionless heat capacity coefficient in the solid regions
(C(ρ̃) = 0, when ρ̃ = 0) to eliminate unrealistic convection contributions.

Finally, we want to measure the the efficiency of the optimized geometry in terms
of heat transfer maximization through the cavity. The Fourier law indicates that Φ∗ =
−k∗∇∗θ∗ ·n is the heat flux density through a surface. Here, k∗ is the thermal conductivity
and the unit normal vector n indicates the orientation of the surface. The non-dimensional
heat flux is thus computed as Φ = k∗/k∗f∇θ · n.

2.2 Numerical specification

To numerically solve the governing equations (3), we rely on the spectral-element solver
Nek5000.15 The code requires the computational domain to be divided in non-overlapping
deformable quadrilaterals, in each of which a tensor product of Legendre polynomials
of order N spans the solution. Additionally, the solution is required to satisfy a C0

continuity condition across the elements. At the N+1 Gauss–Lobatto–Legendre (GLL)
quadrature nodes on each element, the velocity u and the temperature θ are evaluated
with Lagrangian interpolants.19 To guarantee skew symmetry of the advection term in
the momentum conservation equations, over-integration is applied. Moreover, to suppress
spurious pressure modes, the pressure p is evaluated as a Lagrangian interpolant of lower
order (N − 2) on a staggered grid (PN − PN−2 method20).

Moreover, to compute the steady-state solution of the governing equations, a time
marching scheme with enhanced convergence is used, the BoostConv method.16 The
algorithm treats the time evolution of Equation (3) as an iterative algorithm for solving
general large-scale linear systems. A continuously adapting basis of size N is defined,
which spans the rn = [u; θ]n+1 − [u; θ]n residuals in time. With this basis, a least-
square problem is solved to obtain a modified residual ξn, which is used to recompute
[u; θ]n+1 = [u; θ]n + ξnand thus minimize the residual at iteration n+ 1.21
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3 DESIGN DEFINITION

The material indicator function ρ̃, whose use has been described in Section 2.1, is de-
fined indirectly through nonlinear filtering of an auxiliary design variable ρ. In particular,
for the present study we have considered density filters to impose a length scale R to the
optimized structures.22,23 A cascade of so-called fW-mean nonlinear filters17 is used to ob-
tain an approximation of the so-called open operation from mathematical morphology.24

We start by considering the classic linear filter25 FL, defined as the weighted convolution
of two functions

FL(ρ)(x′) =
(ρ ∗ ω)(x′)

W (x′)
=

∫
Ω
ρ(x)ω(|x− x′|) dx

W (x′)
, where

W (x′) =

∫
Ω

ω(|x− x′|) dx, ω =

{
2
3

(
3
2
− |r|

)2
if 1

2
≤ |r| ≤ 3

2

1− 4
3
|r|2 if 0 ≤ |r| < 1

2

, r =
3

2

|x− x′|
R

.

(5)
To perform the open filter operation using fW -mean nonlinear filters, we use first a FE
erode operation, followed by a FD dilate one,

FE(ρ) = f−1
E ◦

(
FL
(
fE ◦ ρ

))
, FD(ρ) = f−1

D ◦
(
FL
(
fD ◦ ρ

))
, (6)

where ◦ indicates a composition of two function, as (fE ◦ρ)(x) = fE(ρ(x)). The functions
fE and fD, together with their inverse f−1

E and f−1
D are, for s ∈ <, defined as

fE(s) =
1

s+ β
, fD(s) =

1

1− s+ β
, f−1

E (s) =
1

s
− β, f−1

D (s) = 1− 1

s
+ β, (7)

respectively, with parameter β > 0. We define our composite nonlinear filter as

ρ̃ = F (ρ) = FD
(
FE(ρ)

)
; (8)

that is, we first compute the composition of fE with the design variable ρ, then we apply
the linear filter FL to the result, in order to obtain ρ′ = FL(fE ◦ ρ). Successively, we
compose the inverse function f−1

E with ρ′ to obtain ρ′′ = FE(ρ), which is composed with
fD to become the input of a second linear filter operation FL (ρ′′′ = FL

(
fD ◦ρ′′

)
). At last,

we compose the inverse function f−1
D with ρ′′′ to obtain ρ̃ = FD(ρ′′).

4 SETUP PRESENTATION

We measure the enhanced performance of the optimized heat sink by evaluating the
heat flux through the cold wall of the cavity (Γ1), that is our objective function

J =

∫
Γ1

−k
∗

k∗f
∇θ · n dΓ. (9)
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4.1 Geometry specification

We impose no slip boundary conditions on all external walls. For the temperature,
we impose on the vertical walls uniform Dirichlet boundary conditions (cold θ = 0 at
x = 0.5, Γ1, and θ = 1 at x = −0.5, Γ2). At z = 0 we define a symmetry plane, Γ3. All
other external walls are by definition conductive (i.e. a Dirichlet boundary condition with
decreasing temperature θ = 0.5 − x). The gravity acts in the negative vertical direction
(−y), and due to the buoyancy force, the horizontal temperature gradient imposed by the
boundary conditions (along x) generates a clockwise flow rotation.

In order to obtain structures that act as heat sinks, we consider the optimization domain
(ΩO) to be a subset of the computational domain (−0.46 ≤ x ≤ −0.25, −0.25 ≤ y ≤ 0.25,
and −0.25 ≤ z ≤ 0, see Fig. 1 for more details). Outside the optimization domain the
design function ρ is forced to be solid in all the collocation points inside the black box
located against the warm wall (Ωs), and fluid everywhere else (Ωf ).

4.2 Optimization problem

We want to optimize ρ ∈ A = {ρ ∈ L∞(Ω) | 0 ≤ ρ ≤ 1, ρ|Ωs ≡ 0, ρ|Ωf
≡ 1} for

maximizing J (see Eq. (9)). The constraints are the governing equations (3), the filter
operation (8), the boundary conditions, and the maximal amount of solid volume

min
ρ∈A

−J ,

s.t.
1

Pr
(u · ∇)u− 1√

Ra
∇2u +∇p− egθ + χ(ρ̃)u = 0 in Ω,

C(ρ̃)(u · ∇)θ − 1√
Ra
∇ · k(ρ̃)∇θ = 0 in Ω,

∇ · u = 0 in Ω,

ρ̃− F (ρ) = 0 in Ω,

u = 0 on Γ \ Γ3, ∇u · n = 0 on Γ3,

θ = 0 on Γ1, θ = 1 on Γ2,

∇θ · n = 0 on Γ3, θ = 0.5− x on Γ \ (Γ1 ∪ Γ2 ∪ Γ3),∫
Ω

(1− ρ̃) dΩ ≤ Vmax.

(10)

To solve (10), we rely on the optimization algorithm MMA26 together with adjoint-based
gradient calculations.7

In detail, we first define an initial design ρ and then iteratively solve the following
algorithm until convergence:

• Compute ρ̃ = F (ρ) (Eq. 8);

• Map ρ̃ to the coefficients k, C, χ (Eq. 4);

• Solve the governing equations (Eq. 3);
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• Solve the adjoint problem

1

Pr
(−(u · ∇u†) + (∇u)T · u†)− 1√

Ra
∇2u† −∇p† + C(∇θ)θ† + χu† = 0,

−eg · u† − C(u · ∇)θ† − 1√
Ra
∇ · k∇θ†= 0,

∇ · u†= 0;

u† = 0 on Γ \ Γ3, ∇u† · n = 0 on Γ3,

θ† =
√
Ra on Γ2, ∇θ† · n = 0 on Γ3, θ† = 0 on Γ \ Γ3 ∪ Γ2,

(11)

• Compute the derivative of the objective function with respect to ρ̃:

ρ† = p(ρ̃−1)p−1θ†(u·∇)θ+p(
ks
kf
−1)(1−ρ̃)p−1 1√

Ra
∇θ†·∇θ+pχ(1−ρ̃)p−1u†·u; (12)

• Apply the following filter operation to obtain the function f

f †(x′) =

∫
Ω

(
ρ†(x) 1

ρ′′′(x)2

)
ω(|x′ − x|)

W (x)
dx

 1

(1− ρ′′(x′) + β)2
,

f(x′) =

∫
Ω

(
f †(x) 1

ρ′(x)2

)
ω(|x′ − x|)

W (x)
dx

 1

(ρ(x′) + β)2
,

(13)

which contains the derivative of the objective function with respect to ρ;

• Use MMA to update ρ.

In brief, the fluid–thermal solver ensures that the governing equations and the boundary
conditions are satisfied, whereas the MMA algorithm enforces the volume limitation and
the conditions on ρ imposed by the definition of A.

5 RESULTS

The optimization has been run for Ra = 104, using materials corresponding to air
(Pr = 0.71) and aluminum (ks/kf = 7749.1). In the SIMP mapping (4), we have chosen
p = 5, and for the filter a continuation technique on β = {1, 0.1}, R = 0.02. Based on
a mesh independence study, the computational domain has been divided in 22 elements
in x and y direction, 11 in the z direction, and with polynomial order 7 (about 104

degrees of freedom in the optimization domain). For the considered Ra, we have verified
by computing the solution in the entire domain that the symmetry condition along z is
not restricting the spectrum of optimal topologies. The results are shown in Figure 2.
There, we can observe, from top to bottom, the optimized heat sinks (last column), which
have been obtained starting with the initial designs shown in the first column, that is,
uniform in ΩO: ρ = 0, ρ = 0.5 (first two rows), and a classical vertical heat sink with
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Table 1: Heat flux through Γ1 with a uniform porous, a uniform solid initial design, and three vertical
fins at the beginning of the optimization and at convergence.

ρ0 = 0 ρ0 = 0.5 3 fins
J0 0.85 0.86 0.88
Jf 0.93 0.93 0.92

three fins (last row), respectively. The structure is plotted with a gray iso-contour at
ρ̃ = 0.5 and the flow is represented by an iso-contour of velocity magnitude |u| = 0.19
colored with the pseudo-colors of the temperature. With the same visual representation,
we can observe in the central column of Figure 2, that the structure actively affects the
flow. If we compare the flow before and after the optimization, then we notice that the
fluid moving with |u| = 0.19 is warmer. The overall velocity in the cavity increases,
thus enhancing the convection contribution. Comparing the initial designs, from top
to bottom, we can observe that a solid uniform medium inside ΩO, creates an obstacle
that strongly brakes the flow. The fluid accelerates vertically along the sides of the
structure, and when it hits the top side of the cavity it decelerates at the expenses of the
horizontal component of the velocity. Its contribution to the velocity magnitude along
the top and bottom sides is substantially lower and therefore there are no |u| = 0.19 flow
structures at these locations. When we allow for some flow inside ΩO, as in the case of
uniform porous material and heat sink with three vertical fins, the velocity magnitude
inside the cavity increases. Some |u| = 0.19 flow structures appear along the top and
bottom sides. They are better defined and of larger size for the heat sink that has a
classical topology, since its geometry is designed to enhance the heat convection. Indeed,
in Table 1 we can see that this configuration enhances the heat transfer, when compared
to uniform material distributions inside ΩO. However, it is not generally optimal for the
flow under consideration. The vertical fins heat up the flows at x locations closer to the
cold wall, similarly to the case with uniform solid ΩO. Moreover, they are less invasive
in the z direction and thus do not obstruct the flow as much as the solid block does.
However, they do not optimize for the circulation. Therefore, to improve the circulation,
the optimization carves the fins to create a double rake with larger harrows on the top
sides and thinner elongated ones on the bottom sides. All optimized topologies can be
considered similar; they enhance the convection contribution and induce a similar flow
inside the cavity. The optimized structures canalize the fluid, increase the size of the
higher speed flow structures, and modify their shape. The lower arms warm up the fluid
at x locations further away from the warm wall, close to the limit of the optimization
domain ΩO. At these locations, the horizontal component of the velocity (ux) is higher,
the structures create an obstacle that causes a bifurcation of the flow. Three main streams
of warmer fluid flow upward, driven by buoyancy. We observe that the structure adapts its
topology to canalize these streams to join again through the side holes. Additionally, with
a smooth curved interface, which is divided in flat and shorter arms, it directs the flow
towards the top-center of the cavity. This flow structures increase the thermal convection,
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extract more heat from the heat sink and thus enhance the cooling performance of the
solid structure (see Tab. 1). In the optimized geometry obtained starting from a vertical
heat sink, the overall heat flux through Γ1 is slightly lower. This is due to the more
developed holes in the upper part of the structure, who allow for more vertical flow,
therefore the maximal velocity magnitude is overall 3% lower.

6 CONCLUSIONS AND OUTLOOK

In the present paper, we successfully carried out topology optimization of heat sinks
confined in a three dimensional differentially heated cavity. We base our results on the
material distribution topology optimization method combined with high-order accuracy
DNS combined with adjoint sensitivity analysis for the gradient computation. The flow
is considered to be in steady-state, at laminar conditions (Ra = 104), and the cavity has
conductive sides. The enhanced performances of the optimized structures are measured
in terms of increase in the heat flux through the cold wall. For air (Pr = 0.71) and
aluminum (ks/kf = 7749.1), the three scenarios considered are delivering an increase
of the thermal performance of 8.5%, 7.3%,and 4.5% respectively. Advanced nonlinear
filtering has been used to decouple the size of the smallest structure and the filter radius,
as well as obtain sharp interfaces between fluid and solid material.17 We deal with a
nonlinear optimization problem, which is known for the presence of local optima and
its dependency on the initial conditions. We, therefore, compare the results obtained
for three different initial configurations and observe that the optimized geometries are
different, but comparable in performance. They have common features, which act on
the flow and thus optimize it for enhancing the thermal convection contribution. The
optimized geometries are hollow in the center, have lower arms to bifurcate the warmer
fluid, lateral holes for rejoining the warm streams flowing upward, and flat circular upper
arms for smoothly directing the flow towards the center-top part of the cavity.

Further investigations will result in an extension of the present work. The impact of
sizing parameters on the optimal topologies can be considered. In particular, it is of
interest to see how different sizes of the optimization domain ΩO, and of the sides of
the cavity (i.e. aspect ratio R = 4 between the height and the other dimensions of the
cavity) affect the final optimal design for the heat sink. In particular, in the last set of
scenarios, not included in this paper, with an elongated cavity, the faster vertical flow,
with a less rounded circulation, will have different topological requirements for enhancing
the convection contribution.
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θ
0.98
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Figure 2: Optimized designs compared with the initial designs, from which they have been obtained.
In gray, the structure (contour ρ̃ = 0.5); with the pseudo-colors of the temperature θ, the flow structure
represented by an iso-contour |u| = 0.19. Left: Initial designs with surrounding flow. Center: Optimized
topologies with surrounding flow. Right: Zoom on the optimal structures.
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