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Abstract. A model of finite-strain visco-plasticity proposed by Simo and Miehe (1992)
is considered. The model is based on the multiplicative split of the deformation gradient,
combined with hyperelastic relations between elastic strains and stresses. This setup is
a backbone of many advanced models of visco-elasticity and visco-plasticity. Therefore,
its efficient numerical treatment is of practical interest. Since the underlying evolution
equation is stiff, implicit time integration is required. A discretization of Euler back-
ward type yields a system of nonlinear algebraic equations. The system is usually solved
numerically by Newton-Raphson iteration or its modifications. In the current study, a
practically important case of the Mooney-Rivlin potential is analyzed. The solution of
the discretized evolution equation can be obtained in a closed form in case of a constant
viscosity. In a more general case of stress-dependent viscosity, the problem is reduced to
the solution of a single scalar equation or, in some situations, even can be solved explicitly.
Simulation results for demonstration problems pertaining to large-strain deformation of
different types of viscoelastic materials are presented.

1 INTRODUCTION

The Simo and Miehe version of the Maxwell fluid was initially presented in [1] as a part
of a more general viscoplastic material model. The main ingredients of this formulation
are the multiplicative decomposition of the deformation gradient and hyperelastic rela-
tions between stresses and elastic strains. A Lagrangian formulation of this model was
considered later in [2]. As shown in [3], the approach of Simo and Miehe has numerous
advantages over alternative formulations proposed for the Maxwell fluid. Due to its supe-
rior properties, it was advocated in the fundamental work on finite-strain viscoelasticity
[4]. Interestingly, in the course of subsequent years, the Simo and Miehe version of the
Maxwell fluid war rediscovered by other authors (cf. the discussion in [5]).
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Dealing with a single Maxwell element, the corresponding evolution equations are six
dimensional. In real computations, the time step size can become larger than the typical
relaxation time of this element. Therefore, implicit integration of the underlying evolution
equation is needed. The time discretization yields a system of six nonlinear algebraic
equations with respect to six unknown components of the tensor-valued internal variable.
The spectral decomposition allows one to reduce the problem to finding three eigenvalues
[6, 4]. In any case, the obtained nonlinear systems of equations are solved by an iterative
Newton-Raphson-like procedure [4, 7, 8, 9, 10, 11, 12, 13, 14]. Unfortunately, iteration-
based procedures may suffer from a lack of robustness and poor computational efficiency.
Problem-adapted algorithms based on a closed-form solution of the underlying system of
equations are more preferable.

Such problem-adapted algorithms can be constructed by exploiting the form of the
strain energy function. For instance, an explicit update formula was obtained for the
classical neo-Hookean potential in [15]. A simple generalization of this numerical scheme
to the strain energy of Yeoh type was presented in [16]. An extension to the thermo-
mechanical case was presented in [17, 18]. Hybrid explicit/implicit procedures can be
obtained for viscoplasticity with nonlinear kinematic hardening. Indeed, the explicit
update formula for the Maxwell fluid allows us to build a scheme which is more stable
than a purely explicit one (cf. [19, 20]). Moreover, the closed-form solution reported
in [15] is implemented as a part of a more general numerical procedures for finite-strain
viscoplasticity (cf. [21]) and finite strain creep (cf. [22]). In [23] the explicit update
formula was implemented to model the large-strain viscoelastic behavior of a bituminous
binding agent.

The main goal of the current study is to analyze the applicability of the refined efficient
numerical algorithms to the case of stress-dependent viscosity. Previously proposed meth-
ods are briefly summarized and new modifications are considered. Just as the original
counterparts proposed for constant viscosity, the new methods are unconditionally stable.
They exactly preserves the incompressibility of the inelastic flow and weak invariance un-
der isochoric changes of the reference configuration (for a general definition of the weak
invariance, the reader is referred to [24]).

2 BASIC MATERIAL MODEL: MAXWELL FLUID WITH A CONSTANT

VISCOSITY

2.1 Lagrangian formulation

Let us briefly recall the version of the Maxwell fluid, proposed by Simo and Miehe in
[1]. In this subsection we focus on its Lagrangian formulation (cf. [2]). By F denote the
deformation gradient tensor. It is decomposed into the inelastic part Fi and the elastic
part F̂e

F = F̂eFi. (1)

To filter out superimposed rigid body rotations, the following tensors of the right Cauchy-
Green type are introduced

C := FTF, Ci := FT
i Fi. (2)
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Let ψ be the Helmholz free energy per unit mass. We assume that ψ is an isotropic
function of the tensor argument CC−1

i . For the the Mooney-Rivlin potential we have

ρRψ =
c10
2

(

trCC−1
i − 3

)

+
c01
2

(

tr(CC−1
i )−1 − 3

)

, (3)

where ρR is the mass density of the material in the reference configuration; the overline
stands for the unimodular part: A := (detA)−1/3A; c10 and c01 are fixed material con-
stants. The neo-Hookean potential is restored for c01 = 0. The second Piola-Kirchhoff
stress T̃ is computed as

T̃ = 2ρR

∂ψ(CCi
−1)

∂C

∣

∣

Ci=const
= C−1(c10CC−1

i − c01CiC−1)D. (4)

Here, AD := A− 1
3
(trA)1. The evolution of the inelastic strain is governed by the ordinary

differential equation with initial condition

Ċi =
1

η

(

CT̃
)D

Ci =
1

η

(

c10CC−1
i − c01CiC−1

)D
Ci, Ci|t=0 = C0

i , (5)

where η is a viscosity; the superimposed dot stands for the material time derivative.
In the simplest formulation we set η = const (so-called Newtonian viscosity), but some
stress-dependent modifications will be considered in the current study as well.

The model is thermodynamically consistent whenever η > 0. From the current La-
grangian formulation, the objectivity of the material model is obvious.

2.2 Eulerian formulation

In order to formulate the Simo and Miehe model of the Maxwell fluid on the current
configuration, we introduce the left elastic tensor of Cauchy-Green type

Be := F̂eF̂
T

e . (6)

The Kirchhoff stress S is computed through

S = 2ρR

∂ψ(Be)

∂Be

Be. (7)

In case of the Mooney-Rivlin potential we have

S = SD = c10(Be)
D − c01(B−1

e )D. (8)

The Lie derivative (also known as the contravariant Oldroyd derivative) of Be is given by

Lv(Be) := Ḃe − LBe −BeL
T. (9)

Here, as before, the superimposed dot stands for the material time rate, L := ḞF−1. The
flow rule and the initial condition are given by

−Lv(Be)B
−1
e =

1

η
SD =

1

η
(c10Be − c01B−1

e )D, Be|t=0 = B0
e. (10)
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Note that all the quantities used in this subsection are invariant under isochoric change
of the reference configuration. In that sense, the current formulation is purely Eulerian.
Mathematically, this means that the model is w-invariant (cf. [24]), which is a certain
type of symmetry. In constructing numerical algorithms we will pay attention to this
symmetry property.

3 MODELS WITH A STRESS-DEPENDENT VISCOSITY

3.1 Stress-dependence “from outside”

Let us consider a model of Zener body (also known as a generalized viscoelastic body)
with the rheological model shown in Figure 1 (left). The model comprises a hyperelastic
spring H and a Maxwell body M ; the structure formula of the model is H|M where
the vertical line | stands for connection in parallel. By SH and SM denote the Kirch-
hoff stresses in the Hooke and Maxwell bodies, respectively. According to the iso-strain
assumption, both bodies are subjected to the same strain. Using the Coleman-Noll pro-
cedure one obtains for the overall Kirchhoff stress

S = SH + SM . (11)

To be definite, for the hyperelastic spring H we assume the Mooney-Rivlin behaviour.
Thus,

SH = SD
H = c

(H)
10 (B)D − c

(H)
01 (B−1)D, where B := FFT. (12)

For the Maxwell fluid we adopt the constitutive equations from Section 2, where the
material parameters c10 and c01 are replaced by c

(M)
10 and c

(M)
01 , respectively. Moreover,

we assume that the viscosity η is a function of SH . In other words, the viscosity depends
on the stress “from outside” the Maxwell body. To be definite, we will use the following
assumption

η = η0 exp
(

− ‖SH‖/S0

)

, ‖SH‖ :=
√

SH : SH , (13)

where η0 > 0 and S0 > 0 are material parameters.

c10
(M)

c01
(M)h0 S0

c10
(H)

c01
(H)

c10 c01
h0 S0

Figure 1: Rheological models and corresponding material parameters. Left: generalized viscoelastic

body with stress dependence “from outside” the Maxwell body. Right: Maxwell body with stress depen-

dence “from inside”.

3.2 Stress-dependence “from inside”

As an alternative, one may consider the Maxwell body with the viscosity η as a function
of the Kirchhoff stress. We consider the evolution equations from Section 2, where

η = η0 exp
(

− ‖S‖/S0

)

. (14)
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Here, again, η0 > 0 and S0 > 0 are material parameters. The corresponding rheological
interpretation is shown in Figure 1(right).

4 NUMERICAL ALGORITHMS FOR THE BASIC MODEL

Let us consider a generic time step tn 7→ tn+1, ∆t := tn+1 − tn > 0. In this section
we present explicit update formulae for the implicit time integration of the evolution
equations (5) or (10).

4.1 Lagrangian algorithm with neo-Hookean potential

First, we consider the constitutive equations from Section 2.1 with c01 = 0 (neo-
Hookean potential). Assume that the current right Cauchy-Green tensor and the previous
inelastic right Cauchy-Green tensor are given by n+1C and nCi. Then the explicit update
formula reads (see [15, 21])

n+1Ci = nCi +
∆t c10
η

n+1C, n+1T̃ = n+1C−1(c10n+1C n+1C−1
i )D. (15)

4.2 Lagrangian algorithm with Mooney-Rivlin potential

For the more general case of the Mooney-Rivlin potential (3), the explicit update
formula is summarized in the following computation steps (see [5])

• 1. A := n+1C−1/2
(

nCi +
∆t
η
c10n+1C)n+1C−1/2

• 2. ε := c01
∆t
η

• 3. ϕ0 :=
(

detA
)1/3

• 4. ϕ := ϕ0 −
trA
3ϕ0

ε

• 5. X := 2A
[(

ϕ21 + 4εA
)1/2

+ ϕ1
]

−1

• 6. n+1Ci = n+1C1/2 X n+1C1/2

• 7. n+1T̃ = n+1C−1(c10n+1Cn+1C−1
i − c01

n+1Ci
n+1C−1)D

In the special case c01 = 0 the overall procedure reduces to (15).

4.3 Eulerian algorithm with neo-Hookean potential

For the Eulerian formulation summarized in Section 2.2 we have the following iteration-
free algorithm. Assume that the current and previous deformation gradients are given by
n+1F and nF; the previous elastic left Cauchy-Green tensor equals nBe. First, we define
the trial elastic left Cauchy-Green tensor

n+1Btrial
e := n+1F nF−1 nBe

nF−T n+1FT.
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Then, dealing with the neo-Hookean potential (c01 = 0) we have

n+1B−1
e = (det n+1F)−2/3(n+1Btrial

e )−1 +
∆tc10
η

1, n+1S = c10n+1Be
D
. (16)

In order to avoid redundant computation steps it is more convenient to store nB−1
e

instead of nBe. In that case we have (n+1Btrial
e )−1 := n+1F−T nFT nB−1

e
nF n+1F−1.

4.4 Eulerian algorithm with Mooney-Rivlin potential

In the more general case of the Mooney-Rivlin potential, the iteration-free algorithm
is summarized in the following computation steps (cf. [5]):

• 1. Ã := (n+1Btrial
e )−1 + ∆t

η
c101

• 2. ε := c01
∆t
η

• 3. ϕ0 :=
(

det Ã
)1/3

• 4. ϕ := ϕ0 −
trÃ
3ϕ0

ε

• 5. n+1B−1
e = 2Ã

[(

ϕ21+ 4εÃ
)1/2

+ ϕ1
]

−1

• 6. n+1S = c10(n+1Be)
D − c01(n+1B−1

e )D

In the special case c01 = 0 this algorithm reduces to (16).
Lagrangian algorithms (cf. Sections 4.1 and 4.2) exactly preserve the w-invariance

of the solution; Eulerian versions of the algorithm (cf. Sections 4.3 and 4.4) respect
the incremental objectivity restriction. The presented numerical schemes preserve the
symmetry of the tensor-valued internal variables (Ci in the Lagrangian case and Be for
the Eulerian formulation). Moreover, the incompressibility condition is exactly satisfied
which is sufficient to suppress the accumulation of the numerical error [25]. The methods
are unconditionally stable and can be used for large time step sizes.

5 NUMERICAL ALGORITHMS FOR THE STRESS-DEPENDENT VIS-

COSITY

5.1 Numerics: stress-dependence “from outside”

Let us discuss the implementation of the material model with a stress-dependent vis-
cosity described in Section 3.1. As before, consider a typical time step tn 7→ tn+1. The
Kirchhoff stress SH pertaining to the Hooke body is evaluated directly, thus giving the
current value n+1SH ; the current stress n+1SM related to the Maxwell body is computed
using the standard algorithm from Sections 4.2 or 4.4. The only modification is that the
viscosity η is formally replaced by the function of already known n+1SH :

n+1η := η0 exp
(

− ‖n+1S‖/S0

)

. (17)
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5.2 Numerics: stress-dependence “from inside”

In this subsection we discuss the numerical implementation of the material model from
Section 3.2, where the viscosity η depends on the applied stress according to (14). The
numerical scheme is a modification of the algorithm, presented in Section 4.2. Assume
that n+1C and nCi are given. Let n+1T̃(η) be a function of η which is obtained by the
computational steps 1-7 in Section 4.2. Note that the norm of the Kirchhoff stress can be
computed as the following function of the Mandel stress

‖S‖ =
√

tr
(

(CT̃)2
)

. (18)

To find the correct value n+1η one needs to solve the following nonlinear equation

g(n+1η) = 0, where g(n+1η) := n+1η−η0 exp
(

−
√

tr
(

(n+1C n+1T̃(n+1η))2
)

/S0

)

. (19)

This equation is solved here using the Newton iteration; the initial approximation for the
unknown n+1η is given by η0.

Strictly speaking, it is not necessary to solve equation (19) exactly. Simplified solution
strategies which provide the solution of (19) with an error O((∆t)2) may be sufficient.
Moreover, obviously, the Eulerian algorithm from Section 4.4 can be used as well.

6 DEMONSTRATION PROBLEMS

To test the algorithms we consider a strain-controlled simple shear test. All quantities
are non-dimensional in this section. The deformation gradient is given by

F(t) = 1 + F12(t)e1 ⊗ e2, t ∈ [0, 9], F12(t) ∈ [0, 3], |Ḟ12(t)| = 1.5. (20)

The prescribed dependence of the shear strain on time is shown in Figure 2.

1 2 3 4 5 6 7 8 90

1

2

3

time [-]

F
1
2

[-
]

Figure 2: Prescribed dependence of the shear strain on time within the simple shear test.

6.1 Simulations: stress-dependence “from outside”

Here we analyze the algorithm from Section 5.1, which corresponds to the material
model described in Section 3.1. The following material constants are used: c

(H)
10 = 0.5,

c
(H)
01 = 0.5, c

(M)
10 = 1.0, c

(M)
01 = 1.0, η0 = 0.5, S0 ∈ {2, 4, 6, 10}.
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The simulated shear stress S12 is plotted versus the shear strain F12 in Figure 3.
According to the modelling assumption from Section 3.1, the viscosity is a unique function
of the instant shear strain. This modelling assumption allows us to capture the changes
in the size of the hysteresis loops.
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Figure 3: Simulation results for the strain-controlled simple shear test: stress dependence “from outside”.

6.2 Simulations: stress-dependence “from inside”

We consider the same simple shear test as in the previous section (cf. Figure 2).
The following material constants of the material model from Section 3.2 are used here:
c10 = 0.5, c01 = 0.5, η0 = 0.5, S0 ∈ {1, 1/2, 1/4, 1/8}. Simulation results obtained using
the algorithm from Section 5.2 are shown in Figure 4. As can be seen, by adjusting S0

one can control the shape of the hysteresis loops. In particular, for small values of S0

the viscosity becomes highly stress dependent. Fast saturation of stress yields material
behaviour which resembles elastic-perfectly plastic stress response.

7 DISCUSSION AND CONCLUSION

Substantial progress has been made in construction of efficient and accurate numerical
algorithms for the Simo and Miehe (1992) version of the Maxwell fluid. The numerical
schemes for constant (Newtonian) viscosity can be generalized to cover various stress-
dependent cases in a simple way.

For the Maxwell fluid with a constant viscosity, the corresponding numerical procedure
is completely iteration-free. In a more general case of a stress-dependent viscosity, the
algorithm can be reduced to a single equation (stress dependence “from inside”) or even
to an explicit update formula (stress dependence “from outside”). Since various advanced
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Figure 4: Simulation results for the strain-controlled simple shear test: stress dependence “from inside”.

models of visco-elasticity and visco-plasticity comprise the Simo and Miehe (1992) version
of the Maxwell fluid, the newly proposed methods can be implemented, thus leading to
more robust and efficient numerical procedures.
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the integration project of SB RAS (project number 0308-2018-0018).
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