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Abstract. The practical application of reliability-based design optimization (RBDO)
requires both accurate models and efficient reliability analysis and optimization meth-
ods. However, these methods become prohibitively expensive for complex multiphysics
engineering applications. In addition, the robust implementation of such multiphysics
packages is nontrivial. As a result, we have developed a a new multifidelity RBDO ap-
proach and a multiphysics simulation suite for supersonic nozzles to demonstrate the
application of RBDO to a complex coupled aerospace design problem. Our results illus-
trate the use of a reliability-based design workflow, the challenges of developing a robust
multiphysics model, and show the benefits of using design under uncertainty methods for
the design of a reliable supersonic nozzle.

1 INTRODUCTION

Complex multidisciplinary design problems are common in engineering and often rely
on simplified models with little multiphysics coupling. In addition, uncertainty in the op-
erating environment and the system itself is often only roughly and usually conservatively
characterized using a safety factor despite being an influential factor for design. Thus
both integrating higher-fidelity coupled multiphysics models into the design process and
more accurately quantifying the uncertainty in a design’s performance can help improve
a system’s reliability from the beginning of the design process and avoid costly fixes later
in the design process or even after manufacturing.

In this paper we discuss the application of reliability-based design optimization (RBDO)
to the design of a supersonic nozzle. The supersonic nozzle design problem was selected
due to its inherent multiphysics nature requiring aerodynamic, thermal, and structural
analyses, as well as the ample presence of uncertainties ranging from material properties
to inlet and atmospheric conditions [1]. Figure 1 shows the different components modeled
in the non-axisymmetric nozzle system. We consider a critical top-of-climb design condi-
tion where temperatures and stresses are the highest. 40 random variables were identified
and characterized from experimental data, simulations, or expert judgment. Our goal
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Figure 1: Schematic of nozzle components.

Number Component Name
1 thermal layer
2 inner load layer
3 middle load layer
4 outer load layer
5 stringers

6-10 baffles 1-5

Table 1: Component numbering.

is twofold: 1) to introduce an RBDO approach and show its benefits over traditional
deterministic design, and 2) to describe the construction and challenges associated with
developing a coupled multiphysics model for design under uncertainty.

Section 2 introduces RBDO, the nozzle optimization problem, and elements of the
RBDO process including dimension reduction, a multifidelity optimization approach, and
uncertainty quantification. Section 3 explores the construction and challenges associated
with building and validating a suite of multifidelity aero-thermal-structural models for the
nozzle design problem. Section 4 shows the optimal reliable nozzle design and compares
it to an optimal deterministic nozzle design. Finally, section 5 concludes with lessons
learned and future directions for the design of reliable complex engineering applications.

2 RELIABILITY-BASED DESIGN OPTIMIZATION

A reliability-based design optimization (RBDO) problem can be written formally as a
stochastic optimization problem over deterministic variables x and random variables ξ,
where one or more of the objectives or constraints seek a small probability of failure, i.e.
a reliable design. A typical form of the RBDO problem is shown in equation 1:

minimize
x,ξ

E[f0(x, ξ)]

s.t. P [fi(x, ξ) ≤ 0] ≤ pf,i i = 1 . . .m
(1)

where fi(x, ξ) are the stochastic quantities of interest in the problem, and pf,i is the
allowable probability of failure associated with chance constraint i, typically calculated
through a reliability analysis. Often the chance constraints are rewritten using an inverse
formulation known as the performance measure approach such as F−1i (pf,i) ≥ 0 where
F−1i is the inverse CDF for fi(x, ξ) [2]. Such a formulation avoids issues during the
optimization when the calculated probability of failure is zero.

The problem in equation 1 is difficult for general nonlinear fi due to the need to eval-
uate quantities of interest multiple times in reliability analyses and over the course of the
optimization. Many methods have been proposed for solving or approximating a solu-
tion to RBDO problems including double-loop methods, sequential methods, and unilevel
methods [2], the latter two of which have shown promise in decreasing the cost of obtain-
ing a solution. In addition, the use of surrogate models and/or multifidelity techniques
can be used to additionally decrease cost when function evaluations are expensive [3].
Lastly, in addition to efficient optimization and reliability analysis methods, dimension
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Figure 2: Total-order Sobol’ indices for the 17 random variables which contribute most to the variance
of the four quantities of interest considered in the nozzle problem. Eliminating variables with indices less
than 10−5 reduces the problem’s random dimension from 40 to 14. First-order Sobol’ indices (not shown)
are nearly the same implying interaction effects can be neglected.

reduction is also a critical technique for the successful application and solution of large-
scale RBDO problems. In many applications, only a subset or specific combinations of
the design variables x or random parameters ξ contribute to variations in the quantities
of interest, allowing a reduction in problem size and therefore expense to be made.

In this paper we consider the RBDO problem for a supersonic nozzle shown in equa-
tion 2. We consider 54 deterministic design variables and 14 random parameters. The
quantities of interest include the mass of the nozzle M , the thrust of the nozzle F , a
temperature failure criterion in the inner load layer T , and a strain failure criterion in the
thermal layer S. Mass is selected as a surrogate for cost in the aerospace design problem
and the constraints were selected from a larger set of 15 on various nozzle components
after random sampling and deterministic optimization showed thrust, thermal failure in
the load layer, and structural failure in the thermal layer to be the most critical quantities.

minimize
x∈<54

E[M(x, ξ)]

s.t. P [F (x, ξ) ≤ 21500] ≤ 10 × 10−4

P [T (x, ξ) ≥ 1] ≤ 10 × 10−4

P [S(x, ξ) ≥ 1] ≤ 10 × 10−4

Ax ≤ b

(2)
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2.1 Dimension reduction via Sobol’ indices

Global sensitivity measures such as Sobol’ indices can be used to justify dimension
reduction. Since Sobol’ sensitivity indices measure the variation in a function f(ξ) due
to each input ξi, variables which contribute little to variation in f(ξ) can be fixed at
nominal values with little to no loss of response fidelity. For dimension reduction, one
should consider the total-order Sobol’ index which estimates the total effect of ξi on f(ξ).

Sobol’ indices can be motivated by first recalling the definition for total variance of a
function: Var(f(ξ)) = D(ξ) =

∫
f 2(ξ)dξ − (

∫
f(ξ)dξ)2. Then, the total variance can be

decomposed as:

D(ξ1, . . . , ξn) =
n∑
i=1

Di(ξi) +
∑

1≤i≤j≤n

Dij(ξi, ξj) + . . .+D1,...,n (3)

Details and an interpretation in light of Analysis of Variance (ANOVA) can be found
in Archer et al [4]. Sobol indices are defined as:

Si1,...,is =
Di1,...,is

D
(4)

The total-order Sobol’ index for ξi is calculated by summing all Sobol’ indices which
incorporate a contribution from ξi. Figure 2 shows the total-order Sobol’ indices calculated
for the 4 quantities of interest considered in the nozzle design problem.

2.2 Trust region model management of multifidelity surrogates

When fi(x, ξ) is expensive to evaluate, a surrogate model or lower-fidelity physics-based
model can be used as a proxy for truth function evaluations during optimization. However,
such models also usually exhibit reduced accuracy over a portion of the design space and
require periodic corrections or adaptive updates. Trust region model management is a
technique for managing such a collection of multifidelity models during optimization [3].
The key idea is to solve a series of cheaper optimization subproblems within a trust region
using a less accurate lower-fidelity model that is periodically corrected with high-fidelity
model information. The trust region location and size is updated after each subproblem
and represents the user’s confidence in the accuracy of the lower-fidelity model.

There are many guidelines for constructing a successful trust region model management
optimization algorithm and Eldred and Dunlavy provide a concise overview of the working
components [3]. For provable convergence to a local minimum, the low-fidelity model must
be corrected to match both the function values and gradients of the high-fidelity model
at the trust region center at the start of each subproblem. The accuracy and correlation
of the low-fidelity model, as well as the selection of the initial trust region size can have
a large impact on the efficiency of the algorithm. Lastly, several varieties of trust region
update and acceptance logic have been proposed in the literature in an attempt to speed
up convergence and avoid infeasible subproblems. In this paper we use a filter method
for trust region acceptance, an adaptive penalty merit function, and what Eldred and
Dunlavy refer to as a direct surrogate trust region formulation. In addition we use a
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sequential method for solving the RBDO problem; as a result the reliability analysis used
to obtain constraint values is only performed once per subproblem in the trust region
model management algorithm. See Fenrich and Alonso for details [1].

2.3 Reliability analysis with polynomial chaos

Solving RBDO problems for complex applications rests largely on the ability to accu-
rately identify the limit state fi(x, ξ) = 0 and efficiently estimate a probability of failure
pf or a response level f(x, ξ) corresponding to a given probability of failure:

pf = P [f(x, ξ) ≤ 0] =

∫
f(x,ξ)≤0

p(ξ)dξ (5)

Sampling methods for estimating pf from equation 5 such as direct Monte Carlo, impor-
tance sampling, or directional simulation typically require too many function evaluations
to be efficient when expensive multiphysics simulations are used [5, 6]. Other common
methods include the First Order (FORM) and Second Order (SORM) Reliability Methods
which grew out of the structural reliability community and can be efficient and accurate
for limit states which are close to linear [6]. Nonlinear limit states can be addressed with
response surface methods where the limit state is approximated by a polynomial, Gaus-
sian process regression model, or other response surface and then pf is estimated more
cheaply from the response surface. However, care must be taken to ensure the response
surface is very accurate in regions contributing greatly to pf [5].

In this paper we consider a response surface method where the limit state is approxi-
mated with orthogonal polynomials through a method known as generalized polynomial
chaos [7]. In other words we approximate f(ξ) as:

f(ξ) ≈
Q∑
i=1

aiΨi(ξ) (6)

where the polynomial expansion has been truncated to include Q terms involving co-
efficients ai and basis functions Ψi(ξ). The benefits of the generalized polynomial chaos
expansion include an analytical estimate of the mean and variance of f(ξ) in terms of the
coefficients ai and adaptivity and error estimates for the approximation. Details can be
found in Xiu and Karniadakis [7] regarding optimal bases and calculation of coefficients
ai. Once the expansion is constructed, Monte Carlo sampling can be used to estimate pf .

3 MODEL DEVELOPMENT

We have developed an automated suite of coupled multidisciplinary analysis tools for
the static aero-thermal-structural analysis of supersonic nozzles called MULTI-F. MULTI-
F is written in Python and calls the open source codes SU2 [8] and AERO-S [9] for fluid
and thermal/structural analyses, respectively. It features a hierarchy of model fidelity
levels, ranging in both the physical fidelity (Quasi-1D/Euler/RANS for fluids and lin-
ear/nonlinear for structures) and mesh discretization. Users can easily run coupled aero-
thermal-structural analyses for user-specified nozzle geometries, material combinations,
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Figure 3: Workflow and capabilities of multifidelity aero-thermal-structural analysis suite MULTI-F.
The user provides a configuration file specifying the problem and a corresponding input file specifying
design variable values. MULTI-F then performs the required analyses and outputs results to a file.

and environmental parameters by managing a configuration file and associated input file
specifying variable values. Figure 3 shows the workflow and capabilities of MULTI-F.

3.1 Shape parameterization

Figure 4: 3D nozzle inner wall shape parameteri-
zation showing B-splines and control points. A set
of linear constraints ensures control points are well
spaced and steep changes in geometry are avoided.

The chosen parameterization for the
nozzle’s inner wall consists of a circular in-
let that is blended to an elliptical exit with
a flattened bottom edge. Each nozzle cross
section is defined using an ellipse and the
entire nozzle shape is parameterized with
three B-splines: one for the centerline and
two for the major and minor axes of the
elliptical cross sections, see Figure 4. A
corresponding 2D axisymmetric geometry
for lower-fidelity models is constructed by
taking equivalent area cross-sections. Wall
layer thicknesses are parameterized using
piecewise bilinear functions. A series of lin-
ear constraints for the shape parameteriza-
tion variables was also developed to ensure
reasonable nozzle geometries during sam-
pling and optimization.
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Figure 5: Randomly sampled 3D nozzle shapes are used to
assess general robustness of the aerodynamic model. Here pres-
sure contours from 3D RANS solutions are shown.

Figure 6: Coarse (top) and fine
(bottom) Euler meshes.

3.2 Aerodynamic model

The internal and external nozzle flow is calculated using SU2, an open-source software
suite for multiphysics simulations [8]. The steady, compressible Euler or RANS equations
are solved in 2D or 3D, depending on the specified model fidelity. Since even small changes
in the nozzle shape can have a dramatic impact on the flow physics, particularly near the
throat of the nozzle, the aerodynamic model must be robust in addition to accurate
and reasonably fast. As a result, the quality of the baseline meshes as well as the flow
solver parameters had to be carefully tuned. A quasi-1D area-averaged Navier Stokes
aerodynamic model with conjugate heat transfer modeled using thermal resistances was
also developed to serve as a low-fidelity model.

For the higher-fidelity models, the governing Euler or RANS equations are discretized
in SU2 using a finite volume method with a standard edge-based data structure. The con-
trol volumes are constructed using a median-dual, vertex-based scheme. The convective
fluxes are discretized using the second-order accurate JST scheme [10] and the Menter
SST turbulence model [11] is employed for viscous simulations. The time integration is
performed using an Euler implicit method and the linear system is solved using the Gen-
eralized Minimal Residual (GMRES) method. In order to damp low-frequency errors an
agglomeration multigrid method is employed.

For each fidelity level, a sequence of three increasingly refined baseline meshes was
crafted ranging from coarse to fine as shown in figure 6. First, an initial mesh is generated
using Gmsh [12] with different levels of refinement for the nozzle interior, exit, plume, mid-
field and far-field regions. Next, the mesh is remeshed using the Feflo.a-AMG Inria library
[13] to satisfy mesh size requirements. For RANS meshes a quasi-structured boundary
layer mesh is also generated using Bloom, a viscous mesh generator developed at Inria
[14]. During optimization, these baseline meshes are deformed to fit the nozzle geometry
by analytically projecting the baseline mesh onto the new geometry and then running the
SU2 mesh deformation module to ensure good quality of the volume mesh.
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3.3 Thermal and structural models

The nozzle thermal and structural analyses are calculated using AERO-S, an open-
source finite element method (FEM) analysis software [9]. An elastostatic boundary
value problem representing the equilibrium of internal and external forces is considered
for the structural analysis while a Poisson boundary value problem representing the steady
state heat transfer is considered for the thermal analysis. One-way coupling is assumed
between the analyses: the temperature obtained from the aerodynamic analysis furnishes
the boundary condition on the inner wall of the thermal model, and the pressure and
temperatures obtained from the aerodynamic and thermal analyses respectively furnish
the inner wall pressure and the temperature distribution used in the structural analysis.
The other boundary conditions are state-independent; a convection boundary condition
is specified on the outer wall of the thermal model, while a fixed displacement boundary
condition is imposed on the outer edges of the baffles and stringers in the structural model.

The fidelity of each of the structural and thermal models is specified by defining the
mesh resolution and degree of geometric approximation. We consider three mesh resolu-
tions and an axisymmetric and nonaxisymmetric nozzle geometry (see figure 7). In the
case of the structural model only, the fidelity can be specified further by selecting between
a linear analysis in which small displacements are assumed and a nonlinear analysis in
which no such assumption is made. For the thermal analysis conventional 8-node hexa-
hedral finite elements and a linear analysis were used. The geometries and meshes were
generated using the OpenCascade library and the transfinite meshing algorithm of the
Gmsh library [12].

Figure 7: Structural model with geometry specified using the three-dimensional parameterization.

A multi-layer elastic shell is used to model the different layers in the nozzle wall (com-
ponents 1-4 in figure 1) and accounts for thermal strains which are the major contribution
to total strain in the nozzle structure. The deformation of such a layered shell is mod-
eled using standard Kirchhoff thin-plate kinematics; the mid-surface in-plane strains and
curvatures are assumed constant and integration through the thickness is performed in a
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piece-wise manner using constant constitutive properties for each layer. We use layered
composite finite elements with three nodes and six degrees of freedom per node [15] each
constructed by superposing a membrane triangle with drilling degrees of freedom [16] and
an assumed natural deviatoric strain (ANDES) bending triangle [17]. Lastly, to account
for large displacements and associated geometric nonlinearity in the high-fidelity model,
the co-rotational formulation is used [18]. This projection-based technique filters out the
potentially large rigid body component of each element’s motion, leaving only a relatively
small elastic deformation to which the theory of linear elasticity can be applied.

3.4 Model validation

In addition to classical code-to-code comparisons of the aero-thermal-structural noz-
zle model, an assessment of smoothness of the model’s quantities of interest should be
performed since numerical noise can adversely impact gradient-based optimization algo-
rithms. To this end suites of random parameter sweeps in both the deterministic design
variables and random parameters were conducted as aids to identify numerical noise issues
due to lack of convergence or other software bugs.

4 RESULTS

We compare reliable nozzle designs from the solution of the reliability-based design
optimization (RBDO) problem stated in equation 2 (reformulated using the performance
measure approach) with designs from the solution of an equivalent deterministic nozzle
optimization where random variables have been fixed at their mean values. The reliable
nozzle designs are obtained from the multifidelity optimization approach using trust region
model management discussed in this paper and found in more detail in Fenrich and Alonso
[1]. The deterministic optimizations are inherently single-fidelity and require no such ap-
proach. The high-fidelity model is taken to be a 3D nonaxisymmetric Euler aerodynamic
analysis coupled with the 3D nonaxisymmetric linear thermal and structural FEM mod-
els. The low-fidelity model is taken to be a quasi-1D area-averaged aerodynamic analysis
coupled with 2D axisymmetric linear thermal and structural FEM models. Stochastic
quantities are estimated via Monte Carlo sampling (N = 106) from the polynomial chaos
expansions (sparse grid level 1) for each quantity of interest.

Table 2 summarizes the optimization results and figure 8 compares each nozzle’s op-
timal inner wall geometries. Sequential quadratic programming is used to solve each
optimization with finite difference gradients. Step sizes and convergence tolerances are
estimated from the parameter sweeps used to assess model noise.

As shown in table 2, the deterministic optimizations obtain a much lower expected
mass due to the lack of chance constraints on thrust, temperature, and stress and are
also correspondingly less reliable. However, when we perform RBDO with the approach
outlined in this paper, we are able to achieve a much more reliable nozzle with a reasonable
increase in computational cost and of course, an increased mass objective. We emphasize
the benefits of performing dimension reduction via Sobol’ indices as a first step in the
RBDO process which allowed us to reduce the potential cost of the optimization problem
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Optimization Fidelity Evaluations E[M(x, ξ)] pf,F pf,T pf,S

Deterministic Low 16 274.55 5.20 × 10−1 6.39 × 10−1 0
RBDO Low 153 517.27 9.50 × 10−5 0 0

Deterministic High 4 277.39 9.31 × 10−3 0 0
RBDO (MF) High 147 349.29 9.80 × 10−5 0 0

Table 2: Comparison of optimization results. The reliability of deterministic designs is obtained via a
post-processing step where a polynomial chaos expansion is constructed and sampled to obtain failure
probabilities. The high-fidelity RBDO uses the multifidelity (MF) method outlined in this paper. Func-
tion evaluation counts during the optimization do not include finite differences. The additional cost of
solving the RBDO problem is primarily due to the required reliability analyses.

(a) Optimal inner wall geometries
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(b) Optimal major axis

Figure 8: Comparison of optimal inner wall geometry with a close-up of optimal major axis geometry
for the low-fidelity and high-fidelity deterministic and stochastic optimizations. Differences in centerline
geometries for all nozzles are barely discernable, however minor differences in optimal minor axis geometry
exist, with the exception of the deterministic low-fidelity optimal result. Note that a throat is present in
the nozzle designs due to the flattening out of the elliptical cross-sections.

by approximately 3 times. In addition, the solution of the RBDO problem has given us
valuable information on which quantities of interest are the most critical for reliability;
in this case thrust is the driving constraint. This is reflected in the shape of the reliable
nozzle designs which feature a larger throat area primarily due to a wider major axis
which leads to increased mass flow rate and therefore increased thrust. We additionally
note that the primary cost of the optimizations is in the evaluation of finite difference
gradients, followed by the reliability analyses for the stochastic optimizations.

5 CONCLUSIONS

In this paper we have reviewed the development of a coupled aero-thermal-structural
supersonic nozzle model called MULTI-F and its use in deterministic and reliability-based
design optimization (RBDO) problems. We affirm that the use of complex engineering
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models in reliable design poses significant challenges that require careful validation and
development effort to ensure robust and accurate model analyses. A well-posed param-
eterization and associated constraints, and parameter sweep studies are instrumental in
achieving successful optimization results. In addition, we note that designing a complex
reliable system can be approximated and made tractable through the use of multifidelity
methods and selection of efficient uncertainty quantification methods, leading to more
reliable performance than traditional design methods for a reasonable increase in com-
putational cost. However, RBDO is still very expensive for large-scale multidisciplinary
problems and we emphasize the need for high performance computing and further develop-
ment of efficient and accurate reliability methods. Analytic sensitivities, when available,
can also be immensely helpful in further decreasing cost. Finally, full coupling between a
model’s disciplines can further increase model fidelity. The authors plan on investigating
adaptive sampling and response surface methodologies for more accurate estimation of
tail probabilities, and the application of the above optimization framework to the higher-
fidelity models included in MULTI-F such as 3D RANS.
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