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Abstract. The CellDrum provides an experimental setup to study the mechanical effects of 

fibroblasts co-cultured with hiPSC-derived ventricular cardiomyocytes. Multi-scale 

computational models based on the Finite Element Method are developed. Coupled electrical 

cardiomyocyte-fibroblast models (cell level) are embedded into reaction-diffusion equations 

(tissue level) which compute the propagation of the action potential in the cardiac tissue. 

Electromechanical coupling is realised by an excitation-contraction model (cell level) and the 

active stress arising during contraction is added to the passive stress in the force balance, 

which determines the tissue displacement (tissue level). Tissue parameters in the model can 

be identified experimentally to the specific sample. 
 
 

1 INTRODUCTION 

 

Healthy cardiac tissue includes approximately 75% cardiomyocytes (CMs) by volume but 

CMs account for only 30-40% by cell number [1]. The majority of the other cells are the 

much smaller fibroblasts whose number even increases in aged tissue and in many forms of 

diseases [2].  

 

Fibroblasts do not only contribute to the tissue structure but it has been shown in both 

experimental and computational studies that fibroblasts coupled to ventricular cardiomyocytes 

influence the electric conduction of cardiomyocytes, e.g. the action potential duration and the 

conduction velocity in tissue [2]-[10]. A computational study by Zhan et al. [9] suggests also 

consequences for the mechanical contraction of ventricular CMs. This is not surprising as the 

contraction is triggered by electrical activation via an intracellular calcium-dependent process 

called excitation-contraction coupling.  

 

So far, experiments on the electrical effects of CM-fibroblast coupling have been performed 

with cardiac tissues obtained from various animal species [3][7][8]. Since the differentiation 

of human-induced pluripotent stem cells into CMs is a well-established methodology [11], the 

so-called human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have 

become a promising alternative. They are harvested from somatic cells from mature donors, 

which increases their availability and ethical concerns become secondary for in-vitro testing 

[12]. On the plus side from a physiological point of view are e.g. a gene expression which is 

consistent with native human CMs [13], and the presence of the major ion current types seen 
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in native human CMs [14]. However, there exist also major structural, electrical, and 

mechanical differences to native human CMs [15]. These differences depend on the 

maturation state [16]-[21]. Maturation is promoted by time in culture [16], substrate stiffness 

[17], biochemical cues [18], external electrical stimulation [19], and an engineered 

longitudinally (anisotropic) alignment of the hiPSC-CM [20][21] while they are aligned 

randomly (isotropic). When drawing parallels to native human CMs in the interpretation of 

the experiments, all relevant differences need to be taken into account.  

 

We use auto-contractile tissues of hiPSC-CMs on a highly flexible substrate to investigate the 

electrical and the mechanical effects of fibroblasts in cardiac tissue. In the tissue, nodal CMs 

assemble to a bundle and create an action potential which spreads over the tissue to trigger 

contraction of atrial and ventricular CMs. Multielectrode Array (MEA) technique is used to 

study the action potential and its propagation. Stiffness and contraction can be examined by 

the CellDrum device which was developed in our institute [22][23]. The CellDrum is a 

circular well (𝑑 = 6.4 mm) with a bottom formed by an ultra-thin (𝑡 = 3 – 4 μm) silicone 

membrane (substrate) on which the hiPSC-CM cell line is cultivated. HiPSC-CMs are aligned 

randomly in the tissue and mature by time in culture. The stiffness of the tissue construct 

(cardiac tissue and membrane) can be measured by inflation testing and the displacement and 

frequency of the contractions are recorded by a capacitive sensor.  

 

Two co-cultured cell lines are used for the study: Cor.4VU® (Ncardia Germany, Cologne) 

containing 90% ventricular and 10% atrial and nodal hiPSC-CMs and Fibro.Cor.4U® 

(Ncardia Germany, Cologne). Fibroblasts Fibro.Cor.4U® are added with various relative cell 

amounts. In preliminary experiments [24], it was found that the tissue construct displacement 

was enhanced in the presence of fibroblasts with a relative cell content of up to 50%. This is 

in contradiction to the computational study of Zhan et al. [9] which suggested that the active 

stress of ventricular CMs (and thus their displacement) decreases when fibroblasts are added 

to the tissue. 

 

Computational models can be used to interpret experimental data, provide mechanistic 

insights and translate experimental data to native human CMs. For these reasons, 

electromechanical multi-scale models of the CellDrum are developed. Frotscher et al. [25][26] 

published the first Finite Element Method (FEM) based models which were developed for a 

cell line with 5% nodal, 35% atrial, and 60% ventricular hiPSC-CMS (Cor.4U®, Ncardia 

Germany, Cologne) to study the effects of various cardiac drugs using the Hill equation 

[27][28]. Nodal, atrial, and ventricular cell models were implemented and the cells were 

considered to be homogeneosly distributed. Since electrical stimulation was driven by the 

nodal model in all points of the tissue construct, the propagation of the generated action 

potential at the tissue level was neglected. 

 

Novel models consider only ventricular CMs because they make the largest part of the 

Cor.4VU® cell line. Electrical coupling of ventricular CMs and fibroblasts is taken into 

account and an external stimulation current is applied in the region of the nodal CM bundle to 

generate an action potential which then propagates through the tissue construct. As done 

already in previously published models [25][26], tissue related parameters can be adapted 

experimentally to the specific sample. Details of the novel computational models are given in 

this paper. 
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2 COMPUTATIONAL MODEL 

 

2.1 Structure 

 

The computational model of the CellDrum consists of two scales, the cellular and the tissue 

scale, and two physical phenomena, electricity and mechanics.  

 

The cellular level consists of coupled electrical models of ventricular CMs and fibroblasts. 

They compute the membrane potential based on the ion currents across the membrane and the 

ventricular model additionally computes the membrane potential driven freely available 

calcium concentration inside the cell. The freely available calcium concentration is input for 

the mechanical (excitation-contraction) model which computes the active stress created by the 

ventricular CMs. Since nodal and atrial cells make only 10% of all cells in the investigated 

cell line, they are not considered in the electromechanical model. In consequence, pacemaker 

are missing and the ventricular cell model requires external stimulation. 

 

The tissue construct is considered as one material which is, both electrically and 

mechanically, isotropic due to the random alignment of the hiPSC-CM on the silicone 

membrane. Electrical cell models are embedded in the reaction-diffusion type monodomain 

equation (monodomain model) which simulates the action potential propagation at the tissue 

level.  

The active stress, which is computed by the cellular excitation-contraction model at each 

point of the tissue construct, is added to the passive stress in the force balance equation of the 

mechanical model (active stress model; [29]). This gives, for certain boundary conditions, the 

displacement of the beating tissue construct. The FEM is used to solve the models at the 

tissue level. 

 

Tissue model parameter are adapted experimentally (conduction velocity measurements, 

inflation testing) to the specific sample and the validation of the CellDrum model is 

performed based on the central displacement of the tissue construct. An overview about the 

model and the workflow is displayed in Fig. 1. 
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Fig. 1. Overview and workflow of the electromechanical CellDrum model. 

 

 

2.2 Electrical model  

 

Propagation of the action potential in cardiac tissue is described by the monodomain model 

[30]. The monodomain model is a simplified version of the bidomain model and is based on 

the assumption that the conductivity in the extracellular space is proportional to the 

intracellular conductivity. Potse et al. [31] compared both approaches and found the 

difference in conduction velocity to be negligibly small. The parabolic partial differential 

equation of the monodomain model reads  

𝜕𝑉

𝜕𝑡
= ∇ ∙ (𝐃∇V) − 𝐼𝑖𝑜𝑛 (1) 

with the isotropic diffusion tensor  

𝐃 = 𝐷𝐈 (2) 

and the no-flux (Neumann) condition at the boundaries of the tissue construct 

𝐧(𝐃∇V) = 0 on Γ𝑁. (3) 

𝑉 denotes the membrane potential [mV], 𝐷 is the diffusion coefficient [mm2ms−1], 𝐈 is the 

identity matrix, 𝐧 is the outward normal, Γ is the boundary of the tissue construct, and 𝐼𝑖𝑜𝑛 is 

the total ion current density [mA(mF)−1] which is computed in the cell models. 𝐷 is derived 

experimentally by linear conduction velocity measurements of the cell line using MEA. The 

initial value of the membrane potential 𝑉(𝑡0) is in line with the ventricular cell model.  
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Couplings of ventricular cells and fibroblasts are assumed to be distributed homogeneously in 

the tissue. 

Ventricular cell models used here, e.g. from ten Tusscher and Panfilov (native human CMs; 

[32]) or Paci et al. (hiPSC-CMs; [33]), are based on the Hodgkin-Huxley formulation [34]  

𝜕𝑉

𝜕𝑡
= −𝐼𝑖𝑜𝑛. (4) 

The total ion current density 𝐼𝑖𝑜𝑛 is the sum of the ion current densities 𝐼𝑖 of all 𝑛 channels 

across the membrane and the external stimulation current density 𝐼𝑠𝑡𝑖𝑚 

𝐼𝑖𝑜𝑛 = 𝐼𝑠𝑡𝑖𝑚 − ∑ 𝐼𝑖
𝑛
𝑖=1 . (5) 

The stimulation current density is added in the elements belonging to the region of the nodal 

CM bundle.  

 

Current densities of each ion channel 𝑖 are a function of the maximum conductance 𝐺𝑖, a set 

of gate variables 𝑔𝑗, and the reversal potential 𝐸𝑖: 

𝐼𝑖 = 𝐺𝑖 ∏ 𝑔𝑗(𝑉 − 𝐸𝑖)
𝑚
𝑗=1 . (6) 

The 𝑚 gate variables of each ion channel control its opening and closure and 𝛼𝑗
+ and 𝑎𝑗

− are 

the respective opening and closure rates. They depend on a threshold value of the membrane 

potential: 

𝜕𝑔𝑗

𝜕𝑡
= 𝛼𝑗

+(𝑉)(1 − 𝑔𝑗) + 𝛼𝑗
−(𝑉)𝑔𝑗. (7) 

The ordinary differential equations (ODEs) of the calcium, sodium, and potassium dynamics 

do not follow a general form in published ventricular CM models. Thus, for details, we refer 

to the original articles.  

 

Fibroblasts are assumed to be homogenously distributed across the tissue, i.e. the same 

number of fibroblasts is coupled to each ventricular CM. Fibroblasts are resistively coupled to 

the ventricular CM by assigning an intercellular conductance 𝐺𝑔𝑎𝑝. According to the 

fibroblast model of MacCannel et al. [4], the membrane potential of the fibroblast is given by 

𝜕𝑉𝑓

𝜕𝑡
= −𝐼𝑓 −

𝐺𝑔𝑎𝑝(𝑉𝑓−𝑉𝑣)

𝑐𝑓
, (8) 

where 𝑓 and 𝑣 in the index denotes fibroblast and ventricular CM, respectively, and the 

membrane capacitance is denoted with 𝑐. A positive 𝐼𝑔𝑎𝑝 = 𝐺𝑔𝑎𝑝(𝑉𝑓 − 𝑉𝑣) indicates that 

current is flowing from the fibroblast into the CM. 

The membrane potential of the ventricular CM is given similarly by 

𝜕𝑉𝑣

𝜕𝑡
= −𝐼𝑣 −

𝑛[𝐺𝑔𝑎𝑝(𝑉𝑣−𝑉𝑓)]

𝑐𝑣
. (9) 

The total number 𝑛 of fibroblasts coupled to one ventricular CM is chosen with respect to the 

relative fibroblast cell content in the tissue. Corresponding to a homogenous distribution of 

fibroblasts, a relative fibroblast cell content of 25% for instance corresponds to 𝑛 = 0.3333 

(
25%

100%
∙

100%

100%−25%
). 

Four ion channels contribute to the total ion current density 𝐼𝑣 in the fibroblasts. Thus, it is 

named an “active fibroblast model” whereas the “passive fibroblast model” consists of a 

membrane capacitance and ohmic resistance connected in parallel [4].  
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The tissue model is solved with the FEM and a fine mesh consisting of ten-node quadratic 

tetrahedral elements. The mesh remains unaltered during the simulation, i.e. deformations of 

the tissue construct due to the contraction of the ventricular CM are not considered in the 

electrical problem. Their effect on the conduction velocity was proven to be negligible small 

and substantial time savings could be achieved. Convergence of the conduction velocity was 

used as criterion to find the optimum element size in a sensitivity study.  

 

The cell models are solved once in each element. The Rush-Larsen scheme [35] was used to 

solve the gating variable-ODEs of the ventricular cell model whereas the accuracy of the 

simple forward Euler method was proved to be sufficient for the other ODEs. The time step to 

solve the coupled electrical model was chosen to be 𝛥𝑡 = 0.1 ms based on a sensitivity 

analysis with both conduction velocity and APD90 (90% of the action potential length) as 

criterions. To guarante convergence to steady state for a given contraction frequency, we 

paced the coupled cell model at the experimentally determined frequency for 50 beats and 

used the resulting values as initial conditions at 𝑡0. 

 

 

2.3 Mechanical model 

 

The hyperelastic tissue construct is a solid body which, at time 𝑡0, is in the reference 

configuration 𝜅0(ℬ) and has material points 𝐗 ∈ 𝜅0(ℬ). At 𝑡 it is in the current configuration 

𝜅𝑡(ℬ) and the material points 𝐱 ∈ 𝜅𝑡(ℬ) are mapped through the motion 𝛘(𝐗, 𝑡): 𝜅0(ℬ) →
𝜅𝑡(ℬ) such that 𝐱 = 𝜒𝑡(𝐗, 𝑡). The deformation gradient is defined to be 

𝐅 = ∇𝑋𝜒𝑡(𝐗, 𝑡) (10) 

and maps the unit tangents of the reference configuration onto those in the current 

configuration. The incompressible behaviour of the tissue construct is modeled by a 

multiplicative decomposition of the deformation gradient [36] 

𝐅 = 𝐅𝑣𝑜𝑙�̅� (11) 

into the volume-changing (volumetric) part 

𝐅𝑣𝑜𝑙 = 𝐽1/3𝐈 (12) 

and the volume-preserving (isochoric) part 

�̅� = 𝐽−1/3𝐅,  (13) 

where the volume ratio 𝐽 = �̅� = 1 is satisfied. The modified right Cauchy-Green tensor is  

𝐂 = �̅�T�̅�. (14) 

Voigt´s isostrain condition is applied to guarantee equal kinematics for both the tissue and the 

membrane. 
 

The force balance is given as 

∇𝑋 ∙ [𝐅𝐒(𝐂, 𝐗)] + 𝐛(𝐗) = 0,  (15) 

where 𝐒 is the second Piola-Kirchhoff stress tensor and 𝐛 are the body forces per unit volume 

in the reference configuration.  

 

On the boundary Γ = Γ𝐷 ∪ Γ𝑁, in the reference configuration of the tissue construct essential 

(Dirichlet) boundary conditions and natural (Neumann) boundary conditions are imposed: 
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𝐔(𝐗) = �̅�(𝐗) on Γ𝐷, (16) 

with a prescribed displacement �̅�(𝐗), and 

𝐅𝐒(𝐔, 𝐗)𝐍(𝐗) = 𝐓(𝐗) on  Γ𝑁.  (17) 

with the normal vector 𝐍 and the prescribed surface traction 𝐓. Dirichlet displacement 

boundary conditions are defined by the fixation of the membrane in the CellDrum and 

symmetry conditions are applied in order to compute the model only for one quarter of the 

circular tissue construct. The weight of the nutrient fluid given to the tissue defines the 

Neumann force boundary conditions. 

 

The total stress 𝐒 in the tissue construct is additively decomposed according to the active 

stress model: 

𝐒(𝑡) = 𝐒𝑝 + 𝐒𝑎(𝑡), (18) 

where 𝐒𝑝 is the passive stress and 𝐒𝑎 is the active stress. The passive stress of the isotropic 

tissue construct is written as 

𝐒𝑝 = 2
𝜕𝜓(𝐂)

𝜕𝐂
− 𝑝𝐂−1, (19) 

with the neo-Hookean strain energy function 

𝜓 = 𝐶10(𝐼1 − 3), (20) 

where 𝐼1 = tr 𝐂. The material parameter 𝐶10 is derived experimentally by inflation 

experiments.  

The active stress of the ventricular CMs is assumed to act equally in all directions and is 

therefore written as 

𝐒𝑎(𝑡) = 𝑆𝑎(𝑡)𝐂−1, (21) 

where 𝑆𝑎 is a time depending scalar value of the active stress computed by the cellular 

excitation-contraction model. 

 

Excitation-contraction models used here, e.g. Land et al. (native human ventricular CMs, 

[37]), are based on ODEs of the form 

𝜕𝛇

𝜕𝑡
= 𝑓(𝛇, 𝐶𝑎2+, λ, λ̇) = 𝑓(𝛇, 𝐶𝑎2+, 𝐂, �̇�), (22) 

𝑆𝑎 = 𝑓(𝛇, λ, λ̇) = 𝑓(𝛇, 𝐂, �̇�), (23) 

where the states 𝛇 of the ventricular CM during active stress generation depend on the freely 

available calcium concentration 𝐶𝑎2+, which is computed by the electrical ventricular cell 

model, the stretch λ of the ventricular CM and the stretch rate λ̇ during contraction. We set 

stretch to a constant value of 1 and the stretch rate to zero. For details, we refer to the original 

articles. So far, there has no excitation-contraction model on hiPSC-CMs been published. 

 

The tissue level is solved with the FEM and a mesh consisting of seven-node quadratic 

triangular shell elements. Compared to the element size of the electrical mesh, the element 

size of the mechanical mesh is much coarser. The central tissue construct displacement was 

chosen as criterion for the sensitivity analysis regarding the element size. The excitation-

contraction model is solved together with the coupled electrical cell model, i.e. the scalar 

value of the active stress is computed in the elements of the electrical mesh. The classical 4th 
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order Runge-Kutta method is used to solve the ODEs and projection is applied to transfer the 

active stress value from the electrical to the mechanical mesh.  

 

The time step to solve the mechanical tissue model was chosen to be 𝛥𝑡 = 1 ms based on a 

sensitivity analysis with the time course of the central displacement as criterion, i.e. the 

mechanical tissue model is solved at every 10th step of the electrical model. 

 

Preliminary results of a similar model which contains the electrical ventricular cell model 

from ten Tusscher and Panfilov [32] and the excitation-contraction model from Niederer, 

Hunter and Smith [38] are published in Jung et al. [39]. 

 

 

3 LIMITATIONS 

 

The computational model of the CellDrum has certain limitations which arise mainly from 

simplifications of the electromechanical modelling of the tissue construct, the cell models, 

and the modelling of the electromechanical interaction.  

 

The tissue construct is electrically and mechanically considered as one material. This allows 

an easy sample specific tailoring of the strain energy function by inflation tests. However, this 

approach implies that the coupled electromechanical problem is solved also in the area of the 

silicon membrane which results in enhanced displacement. This inaccuracy decreases with 

increasing ratio between tissue thickness and membrane thickness.  

 

The tissue construct is viscoelastic in reality. Cansiz et al. [40] has recently integrated a 

viscoelastic material model in a previously published electromechanically coupled computer 

model [41]. Viscoelasticity is however not included in the CellDrum model. 

 

The electrical and mechanical tissue models can be adapted to the given sample in the 

experiments. This is however not yet possible for the cell models. A promising approach to 

tailor electrical models using the patch-clamp and optimal mapping techniques has recently 

been introduced by Lei et al. [42].  

 

Since there is a lack of fibroblast and excitation-contraction models for hiPSC-CMS, a 

fibroblast model based on rat ventricular and native human atrial CMs [4] and a excitation-

contraction model based on native human ventricular cells [37] were implemented.  

 

Electromechanical interaction in CMs is not limited to the excitation-contraction coupling 

altough this is assumed in almost all computational models including ours. Excitation-

contraction coupling describes the pathway from a given action potential to mechanical 

contraction and associated deformation. The opposite pathway does also exist, termed 

mechano-electric coupling: mechanical deformation can alter e.g. calcium dynamics, 

membrane potential, and conduction velocity. Comprehensive reviews including experimental 

and computational approaches to investigate mechano-electric coupling have been published 

by Kohl et al. [44] and Quinn and Kohl [45]. A detailed computational study has been 

published by Kuijpers et al. [46]. Membrane potential changes due to mechanical deformation 

have also been found in fibroblasts [7].  

 

Furthermore, mechanical deformations can directly influence force production, termed 
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mechano-mechanical feedback [37][45][46]. This coupling is integrated in some excitation-

contraction models including the chosen model developed by Land et al. [37]. However, we 

set the deformation in the CellDrum model to a constant value as the actual deformation 

computed by the mechanical tissue model is not transferred to the electrical model. Future 

work will evaluate the effects of a more detailed modelling of electromechanical interaction.  
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