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Abstract. For an efficient and accurate analysis of impact problems reduced flexible
multibody systems can be used. Therefore, a precise reproduction of the wave propaga-
tion in the colliding bodies as well as contact forces and stresses are required. To capture
all mentioned phenomena precisely, a set of eigenmodes and static shape functions has
to be used for the elastic description of the flexible bodies. While the eigenmodes re-
present the global deformations, and therefore are physically important, the static shape
functions are only necessary to capture the local deformations. Hence, their very high
eigenfrequencies are artificially generated and additionally increase the numerical stiffness
of the system. As a result of that, the numerical efficiency may decrease. In the present
paper, two approaches for an efficient contact simulation in reduced flexible multibody
simulations using static shape functions are presented. Both approaches are based on
the subdivision of the elastic parts of the equations of motion in low and high frequency
parts. The first approach uses modal damping on the high frequency parts. The second
approach treats the high frequency parts quasi-statically and so they can be neglected
in the dynamic simulation. The focus is on numerical stiff systems with a large number
of static shape functions simultaneously loaded. Comparisons are made between reduced
flexible multibody systems using the proposed approaches and full non-linear finite ele-
ment simulations.

1 INTRODUCTION

One suitable approach for the efficient dynamical analysis of mechanical systems con-
sidering body flexibility is the method of flexible multibody systems (FMBS). In many
dynamical systems, structural deformations can often be considered to be small and lin-
ear elastic. Hence, the floating frame of reference (FFoR) formulation is a suitable choice
for the description of the body flexibility, see [1, 2]. In this method, the body-related
frame undergoes large nonlinear motions and rotations. Furthermore, the small linear
deformation of the body is described with respect to the reference frame.
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Usually, the finite element (FE) method is used to model the body flexibility. In
order to capture the local and global deformation effects in colliding bodies, a very fine
discretized mesh is necessary. Due to the resulting large number of nodal degrees of
freedom (DOF), the computation times are very high. For an efficient investigation of
the system behavior, before and after impact, the approach of FMBS using reduced FE
models combined with a contact model can be used. Hence, in the presented contribution,
a combination of reduced FMBS and nodal contact calculation, see [3, 4], is presented.

In the case of collision between flexible bodies, the rigid body motion changes and
local deformations occur. Furthermore, impacts may introduce high frequency wave phe-
nomena. Hence, for the analysis of the dynamical behavior after impact, the contact
forces, the stresses and the wave propagation are essential. Using a moderate number of
eigenmodes to describe the reduced elastic body, the wave propagation is typically well
approximated, see [4, 5, 6]. However, the local deformation and stresses in the contact
area are poorly approximated using only a small number of eigenmodes. In addition, due
to the missing local deformation there is no convergence behavior of the penalty factor
observable when using the penalty contact formulation. Due to the missing local deforma-
tion, the contact stiffness is approximated too stiff. To compensate this stiff behavior, the
penalty factor must be chosen relatively small. Therefore, increasing the penalty factor
yields higher contact forces. Consequently, the simulation results depend strongly on the
penalty factor, which has to be tuned heuristically to obtain good results, see [4, 6].

To capture the deformations in the contact area an additional set of static shape
functions for each possibly loaded DOF can be used. However, these static shape func-
tions introduce additional eigenfrequencies of very high magnitude to the reduced sys-
tem, see [6, 7]. Due to these fast system components, the numerical stiffness increases.
Consequently, the numerical efficiency decreases and non-physically high frequency oscil-
lations may occur.

For an efficient and accurate impact simulation in reduced FMBS using static shape
functions, two contact submodels, firstly presented in [6, 7], are used in this contribution.
In both approaches, the elastic parts in the equations of motion of FMBS are divided in
low and high frequency parts. According to [8], the low frequency parts represent the
global motion in terms of wave propagation and the high frequency parts result from
the local deformation. In a first approach, called damped contact submodel, proportional
damping on the high frequency parts is used to reduce the influence of the high frequencies
on the dynamic simulation. The second approach, called quasi-static contact submodel,
initially presented in [6], is extended for a more efficient contact force evaluation in this
contribution. In this second approach there is no need to determine suitable damping
parameters. In order to investigate the limits of the contact submodels, numerical ex-
amples with a large number of nodal DOFs, resulting in many static shape functions
simultaneously loaded and high numerical stiffness, are used.

The present work is organized in the following way. In Section 2 some basics of con-
tact modeling in FMBS are briefly reviewed. This includes the model order reduction
technique, the contact formulation and the mentioned contact submodels. In Section 3,
numerical results of impacts of two bodies are presented. These results show the efficient
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evaluation of the dynamic behavior, before and after impact, using the damped and the
quasi-static contact submodel. Finally, in Section 4 a summary is given.

2 FLEXIBLE MULTIBODY MODEL

In this section, some fundamentals related to contact simulations with reduced FMBS
are presented. At first the FFoR formulation is described. Then the model order reduction
technique and the implemented contact formulation is presented. Subsequently, the used
contact submodels are outlined.

2.1 Equations of motion

One frequent approach to take body flexibility into account in multibody systems
is the FFoR formulation, see [1, 9]. In this approach, the motion of an elastic body
is separated into a large non-linear rigid body motion of the moving reference frame
and small deformations relative to this reference frame. In many applications of flexible
multibody systems, the structural deformations are small and linear. In this case the
elastic bodies can be efficiently described using the FFoR approach. The position vector
of an arbitrary point P on the flexible body can be described by the sum of the large motion
of the reference frame and small linear deformation. The deformation uP is approximated
by the matrix of shape functions Φ and the time-dependent elastic coordinates qe as

uP(cRP, t) = Φ(cRP)qe(t). (1)

In equation (1) the vector cRP represents the position of point P in the body-related frame.

The vector of generalized coordinates of the system is given by q =
[
qT
r , qT

e

]T ∈ Rf ,
with the rigid coordinates qr ∈ Rfr representing the rigid body degrees of freedom and
the elastic coordinates qe ∈ Rfe describing the elastic deformations, see [2]. Consequently,
the equations of motion of a FMBS in minimal coordinates are given as[

Mrr Mre

Mer Mee

]
︸ ︷︷ ︸

M

[
q̈r

q̈e

]
+

[
0

Deeq̇e + Keeqe

]
=

[
f c,r
f c,e

]
︸ ︷︷ ︸

f c

+

[
hr

he

]
︸︷︷︸

h

. (2)

The generalized mass matrix M ∈ Rf×f contains submatrices due to the rigid body
motion Mrr and the flexible body Mee, as well as the inertia coupling matrices Mer and
Mre, see [1, 9] for further details. In equation (2) Kee ∈ Rfe×fe and Dee ∈ Rfe×fe are the
stiffness and damping matrices of the generalized elastic coordinates and f c ∈ Rf is the
vector of the generalized applied forces. In the vector h ∈ Rf the generalized Coriolis,
gyroscopic and centrifugal forces are summarized.

2.2 Model order reduction

A common way to describe the flexible body in equation (2) is the FE method. The
linearized equations of motion of the FE model can be written as

Meü + Deu̇ + Keu = f e, (3)
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with the vector u ∈ RfFE containing the nodal displacements of the FE model. Here
Me, De, Ke and f e are the mass matrix, damping matrix and stiffness matrix and the
applied force vector of the FE model, respectively. Further, Rayleigh-damping is assumed.
The direct integration of these FE models in the multibody simulation would result in
a high dimension of the equations of motion. In order to reduce this number of DOFs,
model order reduction methods are used.

The shape function matrix Φ shown in equation (1) is determined by linear model
order reduction methods. In this work, the Craig-Bampton method, a special case of the
Component Mode Synthesis is used for model order reduction, see [10]. In the Craig-

Bampton method, the matrix Φ ∈ RfFE×f̂e is determined from selected eigenmodes as
well as a set of constraint modes. These constraint modes are the static solution of the
flexible body when a unit displacement is applied to each interface node. This matrix Φ
fulfills the conditions of the Buckens-frame, see [1]. This yields the reduced mass matrix
Mee = ΦTMeΦ, damping matrix Dee = ΦTDeΦ and stiffness matrix Kee = ΦTKeΦ
accordingly.

To consider dissipative effects, the reduced damping matrix Dee can be approximated
by viscous damping, e.g. proportional damping. Using proportional damping, the eigen-
modes of the undamped and the damped system agree, see [11, 12]. Based on this con-
dition, the reduced system matrices can be transformed in diagonal form using mass-
orthonormal eigenvectors as follows

φT
i Meeφj = δij, φT

i Deeφj = 2ωiξiδij and φT
i Keeφj = ω2

i δij, with i, j = 1 ... f̂e. (4)

Here, ξi denotes the modal damping parameter of the i-th eigenfrequency ωi of the un-
damped reduced system. The Kronecker symbol δij is equal to one for i = j and equal to
zero for every i 6= j.

2.3 Contact formulation

The contact model used in this contribution belongs to the penalty formulation and
focuses on the frictionless normal contact. For an accurate contact force calculation, a
precise three dimensional description of the contact area is necessary. Hence, a combi-
nation of nodal contact force calculation and reduced FMBS is used, see [3, 4]. Here,
the surface elements from the underlying FE discretization are used as contact elements.
For contact detection and force evaluation, this contact formulation uses node-to-surface
elements as well as the contact situations node-to-edge and node-to-node. During time
integration, in each time step the nodal coordinates of the contact area are determined
using the generalized coordinates. Therefore, the efficiency of the contact algorithm is
highly depending on the size of the contact area and the size of the matrix Φ. Sub-
sequently, according to [1], the nodal contact forces are summarized in the generalized
discrete forces f c.

2.4 Contact submodels

For an efficient contact simulation using reduced models considering static shape func-
tions two approaches will be discussed in this section. In both approaches, the elastic
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parts in equation (2) are subdivided according to [8] in low and high frequency parts.
First, the elastic parts of the system are decoupled by solving the generalized eigenvalue
problem and building mass-orthonormal eigenvectors, see [11]. Subsequently, the elastic
coordinates in equation (2) can be divided in low frequency elastic coordinates qlf

e ∈ Rf lf
e

and high frequency elastic coordinates qhf
e ∈ Rfhf

e , such asMrr sym.
Mlf

er Mlf
ee

Mhf
er 0 Mhf

ee

 q̈r

q̈lf
e

q̈hf
e

+

0 sym.
0 Dlf

ee

0 0 Dhf
ee

 q̇r

q̇lf
e

q̇hf
e


+

0 sym.
0 Klf

ee

0 0 Khf
ee

qr

qlf
e

qhf
e

 =

f c,r
f lfc,e
fhfc,e

+

hr

hlf
e

hhf
e

 . (5)

The low frequency parts correspond to the global motion of the elastic body like the wave
propagation. However, the high frequency parts are artificially generated by the static
shape functions. They mostly represent the local deformations of the elastic body and have
no effects on the low frequency global deformation. Hence, their dynamic contribution to
the system dynamics can be neglected.

In this work, considering the eigenfrequencies of the decoupled elastic parts of the sys-
tem, the separation frequency for distinction between low and high frequency parts is
selected as follows. First of all, a sufficient number of eigenmodes to capture all global
vibration effects in the frequency range of interest must be defined. Then, the eigen-
frequency of the highest selected eigenmode represents the highest frequency of the low
frequency parts. All frequencies of higher magnitude belong to the high frequency parts.
Accordingly, all artificial frequencies introduced by the static shape functions belong to
the high frequency terms. However, selecting the separation frequency as shown is only
possible if the frequencies of the static shape functions are not in range of the low fre-
quency parts.

In order to increase the numerical efficiency of the contact simulation a damped contact
submodel was introduced in [6, 7]. In this first approach, modal damping is used to damp
the eigenfrequencies inserted by the static shape functions. To capture the low frequency
wave propagation, damping is used only on the high frequency parts. The main task is
to identify the modal damping parameters ξhfi using numerical studies. Firstly, the wave
propagation should not be affected by the choice of ξhfi . Secondly, the damping parameters
should be large enough to increase the numerical efficiency sufficiently. In this work the
damping parameters are calculated depending on the damped period T hf

d,i = 2π/ωhf
d,i with

ωhf
d,i = ωhf

i

√
1− ξhfi and the undamped eigenfrequency ωhf

i , as introduced in [6].
To avoid the determination of the unknown damping parameters using numerical stud-

ies, the quasi-static contact submodel, initially presented in [6], can be used in the contact
simulation. After partitioning the decoupled equations of motion (5) it can be shown that
the dynamical contribution of the high frequency parts to the system can be neglected.
Using the Buckens-frame, a significant simplification of the equations of motion is possi-
ble, see [1]. But there is still an inconvenient coupling between rigid body motion and the
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deformation of the elastic structure due to Mer. In [8] it is shown, that the influence which
inertia coupling of Mhf

er has on the equations of motion is smaller than the influence which
inertia coupling of Mlf

er has. This is due to the specific characteristic of the high frequency
parts, they only represent the local deformation. According to [8], the change of inertia
is dominated by the low frequency parts, which represent the global deformation. Due
to their specific characteristic, the local deformation has negligible influence on the mass
moment compared to the global deformation and therefore the influence of high frequency
parts Mhf

er is negligible. As a result of that, the vector hhf
e is negligible too, see [8].

Neglecting Mhf
er is confirmed by [13] using numerical experiments. The high frequency

elastic coordinates in equation (5) can be excited by the inertia coupling through Mhf
er

as well as the generalized external forces fhfc,e. In [13] it is shown, that the influence of
the excitation by generalized external forces is significantly higher than the influence by
inertia coupling effects and so the inertia coupling through Mhf

er can be neglected. Hence,
neglecting damping, the last row of equation (5) can be simplified as

Mhf
eeq̈

hf
e + Khf

eeq
hf
e = fhfc,e. (6)

This high frequency system represents the local deformation around the contact point.
In low velocity impacts, the local deformation is quasi-static and therefore the inertia
effects Mhf

ee can be neglected, see [8, 14]. However, the quasi-static influence of the dis-
placement field

qhf
e = Khf

ee

−1
fhfc,e, (7)

cannot be neglected. Especially, considering contact problems, the local displacement
field and the global deformation is important for the accurate computation of the state-
dependent contact forces f c

(
qr,q

lf
e ,q

hf
e

)
. The unknown elastic coordinates qhf

e follow
from the static equation (7) while the rigid coordinates qr and the low frequency elastic
coordinates qlf

e are available from the time integration. The evaluation of qhf
e leads to the

following system of nonlinear equations

f = Khf
ee

−1
fhfc,e
(
qr,q

lf
e ,q

hf
e

)
− qhf

e = 0, (8)

which has to be solved iteratively by a Newton-Raphson method.
In [6] the schematic structure of the quasi-static contact submodel is presented. Solving

equation (8), the Jacobian J(qhf
e ) is calculated in every iteration for a better approximation

of qhf
e,n+1 = qhf

e,n + ∆qhf
e,n with ∆qhf

e,n = −[J(qhf
e,n)−1fn] until the solution is found. In this

work, the Jacobian J(qhf
e ) used in the Newton’s method is computed only at the start of

the contact force calculation or in case of slow convergence. During the iterations, the
Jacobian is updated using Broyden’s method, see [15], as

J(qhf
e,n+1) = J(qhf

e,n) +
∆fn+1 − J(qhf

e,n)∆qhf
e,n+1

||∆qhf
e,n+1||2

∆qhfT

e,n+1, (9)

with ∆qhf
e,n+1 = qhf

e,n+1 − qhf
e,n and ∆fn+1 = f(qhf

e,n+1)− f(qhf
e,n). The Jacobian is updated

using equation (9) until a maximum number of iterations is reached during root search.

6



Stephan Tschigg and Robert Seifried

Then, a new Jacobian will be computed. Compared to the quasi-static contact submodel
presented initially in [6], the efficiency is significantly improved. Using this approach, the
high frequencies of the static shape functions can be eliminated in the dynamic simulation.
Thus, the numerical stiffness is reduced and larger time integration steps are possible.
However, in each time step an additional system of nonlinear equations has to be solved.

3 NUMERICAL IMPACT STUDIES

To show the efficiency and the accuracy of the proposed contact submodels, first contact
simulations using simple reduced FMBS are performed. The results focusing on the local
and global deformation effects are validated with dynamic simulations using full dynamic
FE simulations. For a correct evaluation of all deformation effects in the colliding bodies,
a fine discretized mesh is necessary. Especially the contact region has to be discretized
very finely to capture the deformations and stresses precisely. For all simulations the same
computer, an Intel Xeon E3-1270v5 4x3.6 GHz with 64 GB RAM, is used.

The models used for numerical validation are composed according to [5] of a steel sphere
(radius 15 mm) and two different aluminum rods, see Figure 1. At first, the impact of
the sphere on a plane rod (radius 10 mm, length 1 m) is investigated. Then, to show the
influence of large contact areas resulting in a large number of interface nodes, a rod with
an inner radius of 20 mm is used. In both cases, the sphere’s impact velocity is 0.3 m/s.

Using reduced bodies in the FMBS will inevitably lead to a stiff set of differential
equations. Hence, the computation time increases and efficient formulas like the backward
differentiation formulas have to be used for solving such stiff systems. In this contribution,
the FMBS contact simulation is carried out using the MATLAB solver ode15s, see [16].
In stiff differential equations, using the ode15s, relatively large step sizes are possible.

3.1 Impact on planar rod

At first the impact of the steel sphere on the plane aluminum rod is investigated. The
FE model of the rod consists of 342 984 nodal DOFs and the sphere consists of 64 086 nodal
DOFs. Due to this large number of nodal DOFs, the computation time of the dynamic
FE simulation is very high with about 697 mins in Abaqus. In the reduced model, for
a precise approximation of the wave propagation in the rod, up to 200 eigenmodes are
necessary. The static shape functions are calculated at 297 contact nodes (rod) and 261
contact nodes (sphere), resulting in 1085 and 802 elastic DOFs. To shorten computation
times, only the DOFs in impact direction are considered when calculating the static shape
functions. Numerical studies have shown that in case of the central impact the remaining
DOFs can be neglected without losing accuracy. Thus, the reduced model of the rod
consists of 491 elastic DOFs while the sphere consists of 280 elastic DOFs.

v v

Figure 1: Model description - steel sphere and aluminum rod
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Figure 2: Contact forces a) and velocity at the rod end b) (plane rod) (FE: finite element results,
DS: damped contact submodel, QS: quasi-static contact submodel)
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Figure 3: Contact pressure in contact area a) and stresses on symmetry axis of rod b) (plane rod)
(FE: finite element result, DS: damped contact submodel, QS: quasi-static contact submodel)

The eigenfrequencies of the inner modes are up to 69 kHz (rod) and 131 kHz (sphere).
However, the eigenfrequencies introduced by the static shape functions are up to 21 MHz
(rod) and 18 MHz (sphere). During impact, the contact forces excite all vibration modes
and very small step sizes are necessary during time integration to capture the fast com-
ponents. Consequently, the numerical stiffness increases significantly. Due to the high
numerical stiffness, the step sizes have to be very small and the convergence of the simpli-
fied Newton iteration in the ode15s, see [16], is very slow. Without material or numerical
damping or using the quasi-static contact submodel, the computation times of the FMBS
would be significantly higher than the computation times of the FE simulation. For this
reason, impact simulations using undamped models are not reasonable.

In order to increase the computational efficiency, the damped contact submodel is used
first. For this purpose, the modal damping parameters have to be identified. As presented
in Section 2.4, the damping parameters of the high frequency modes are calculated using
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the damped period T hf
d,i. Therefore, the damped periods for all high frequency modes are

adjusted to an equal value. For an efficient simulation, the damped period T hf
d,i has to

be selected as large as possible for large step sizes, but small enough that there is no
influence on the wave propagation. Furthermore, the choice of the damping parameters
in the transition area between low and high frequency parts has great influence on the
numerical efficiency, see [6].

Numerical studies have shown that a damped period of T hf
d,i = 5e−7s and damping

parameters of ξhfi = 0.05 in the transition area are a good choice in terms of efficiency
and accuracy for the system rod–sphere. The contact force of the FMBS simulation is in
very good agreement with the FE results, see Figure 2a). As shown in Figure 2b), the
global motion of the rod can be approximated very well, too. Damping only the high
frequency parts, there is no negative influence on the wave propagation. The contact
pressure and the stresses on the symmetry axis of the rod shown in Figure 3 agree very
well with the FE results. The stresses in the FMBS are recovered using stress modes,
see [17]. Consequently, the local deformation is approximated very well, too. Due to
the good approximation of the local deformation, a convergence behavior of the penalty
factor is observable. Using the damped contact submodel, a reasonable investigation of
this numerically stiff system is possible at all. But the computation time with about
280 mins is still relatively high.

In order to further improve the efficiency, the quasi-static contact submodel, presented
in Section 2.4, is used. The results of the sphere impacting the plane rod are shown in
Figure 2 and Figure 3. Again a very good agreement of contact force, wave propagation
and stresses in the contact area are observed. The computation time can be reduced
significantly to about 23 mins. Furthermore, the results considering all global and local
deformation effects are in very good agreement with the FE results. In addition, it is
observed, that the simulation results do not change when further increasing the penalty
factor.

3.2 Impact on rod with inner radius

The next investigation focuses on larger contact areas with a higher number of static
shape functions simultaneously loaded. For this purpose, the rod is modeled with an
inner radius of 20 mm. The geometry of the sphere remains unchanged as well as the
impact velocity of 0.3 m/s. The contact radius of the plane rod, shown in Section 3.1, is
about 0.5 mm. Using the rod with inner radius, the contact radius increases up to 1 mm.
Therefore, the number of static shape functions in the contact area increases, too. Com-
pared to the previously presented FE model, the discretization in the contact area is now
slightly coarser. Hence, the rod consists of 281 196 nodal DOFs and the sphere consists
of 58 536 nodal DOFs. Then, the computation time of the dynamic FE simulation is
about 434 min. Again 200 eigenmodes are used in the reduced description to capture
the wave propagation in the rod. For the calculation of the static shape functions 393
contact nodes (rod) and 385 contact nodes (sphere) are used which leads to 1373 (rod)
and 1174 (sphere) elastic DOFs. Considering the DOFs in impact direction, 587 (rod)
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Figure 4: Contact forces a) and velocity at the rod end b) (rod inner radius) (FE: finite element results,
DS: damped contact submodel, QS: quasi-static contact submodel)
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Figure 5: Contact pressure in contact area a) and stresses on symmetry axis of rod b) (rod inner radius)
(FE: finite element results, DS: damped contact submodel, QS: quasi-static contact submodel)

and 404 (sphere) elastic DOFs remain. While the eigenfrequencies of the inner modes
remain the same, the eigenfrequencies introduced by the static shape functions are up to
22 MHz (rod) and 30 MHz (sphere).

Numerical studies have shown, that a damped period T hf
d,i = 5e−7s and the damping

parameter ξi = 0.05 in the transition area are suitable values for the investigated system.
The results of the damped FMBS simulation are shown in Figure 4 and 5. The contact
force and the wave propagation in the rod are in very good agreement with the FE
results. Compared to the plane rod, the contact duration is shorter and the contact
force is higher using the rod with inner radius, see Figure 2a) and 4a). Furthermore,
the impact on the rod with inner radius yields stronger wave excitations compared to
the plane rod, see Figure 2b) and 4b). The stress analysis, presented in Figure 5, shows
that the impact on the rod with inner radius creates smaller stresses since the contact
force is distributed on a larger area. Due to the large number of elastic DOFs and the
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high numerical stiffness caused by high eigenfrequencies, the computation time using the
damped contact submodel is about 513 min and underperforms the FE model.

Again, in order to further increase the efficiency, the quasi-static contact submodel
is used. The results shown in Figure 4 and 5, are in very good agreement with the FE
results and the results of the damped contact submodel. Compared to the damped contact
submodel and FE simulation, there is a major reduction of computation time to about
46 min. The FMBS contact simulations show slightly larger deviations in the contact
pressure and stresses compared to the FE model, see Figure 5. This may result from the
coarser discretization in the contact area. Nevertheless, due to the precise modeling of
the local deformation a convergence behavior of the penalty factor is observable in both
submodels.

4 CONCLUSIONS

In impact simulations using reduced FMBS, besides global vibration modes, a large
number of static shape functions are often necessary for the detailed analysis of the local
and global deformation effects. Extending the reduction basis by static shape functions,
additional eigenfrequencies of high magnitude are added to the reduced system. Hence,
the numerical stiffness increases. For an efficient investigation of those models, in the
present work, different approaches have been presented. In both approaches the equations
of motion are divided in low and high frequency parts. The first approach uses modal
damping on the high frequency parts, to increase the numerical efficiency. Using the
damped contact submodel, the results are in very good agreement with the FE reference
results, but the computation times are still very high. Especially in simulations like the rod
with inner radius considering a large number of static functions, the limit of the damped
contact submodel is reached. It is not possible to find appropriate damping parameters
to reduce the numerical stiffness on the one hand and not affect the wave propagation on
the other hand. Thus, the damped contact submodel is limited to less stiff systems or less
elastic DOFs. In the quasi-static contact submodel approach, the inertia coupling between
rigid body motion and the deformation of the high frequency parts is neglected. By
treating the high frequency parts quasi-statically, they can be removed from the equations
of motion. With this approach, the numerical efficiency is significantly enhanced compared
to the damped contact submodel. Nevertheless, the results are in very good agreement
with the FE reference simulation. The presented simple numerical examples illustrates
the advantage of the quasi-static contact submodel in impact simulations considering a
large number of static shape functions and high numerical stiffness.
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