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Abstract. The discontinuous stiffness properties of composite laminates theoretically induce
infinite stresses at free edges. These highly localized interlaminar stresses may lead to a pre-
mature failure of the laminate. Due to infinite stresses and the absence of a pre-existing crack,
neither classical strength-based nor purely energy-based failure criteria allow for reliable failure
load predictions. These drawbacks are overcome by the coupled stress and energy criterion
within the framework of finite fracture mechanics (FFM). This approach has already proven
successful for the analysis of interlaminar crack initiation in angle-ply laminates. However, the
analyses based on the finite element method typically go along with a high numerical effort.
In the present study, interlaminar crack initiation at a free edge in symmetric laminates based
on a generalized plane strain model is investigated using FFM. Initially, the problem is again
treated using the finite element method acting as a reference solution. But compared to former
works interface fracture properties are not determined through a parameter fit. Instead, realistic
interface fracture properties are taken into account yielding a good agreement with experiments
from literature. The goal of the present work is to predict interlaminar crack onset in composite
laminates using FFM in combination with the highly efficient semi-analytical scaled boundary
finite element method (SBFEM) which significantly reduces the numerical effort compared to
the FEM. First results show the high potential of the SBFEM in comparison with the FEM.

1 Introduction

Since the late sixties the existence of interlaminar stresses on the interface between two
dissimilar layers along composite laminates’ free edges, with probably negative impact on the
effective strength, is known [1]. In 1970 Pipes and Pagano [2] investigated the interlaminar shear
stress distribution in symmetric four-layer angle-ply laminates subjected to axial loads. Their
results revealed the singular nature of the interlaminar shear and normal stresses at the free
edge caused by the discontinuous stiffness properties of the layers. Subsequently, the pioneering
work of Pipes and Pagano triggered many studies examining the free-edge effect. Thereby, the
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investigations focused on the three-dimensional singular stress field at the free edge. For an
overview, the reader is referred to [3, 4]. Beyond that, the investigation of the local stress field
and its influence upon laminate strength was a crucial issue. In 1974, Whitney and Nuismer [5]
proposed the evaluation of a stress criterion averaged over a certain distance, the so called critical
length, in order to tackle stress concentrations in laminates. The critical length was assumed
to be a material property and independent of laminate layup. Alternatively, several fracture
mechanics approaches were employed [6, 7]. However, due to the lack of a pre-existing crack an
assumption regarding a critical length or inherent flaw size was still needed.
In order to avoid the use of a critical length, which is not a material parameter and depends on
the structural situation and load [8, 9, 10], Leguillon [11] introduced a coupled stress and energy
criterion within the framework of finite fracture mechanics (FFM). This criterion allows for the
prediction of crack initiation in terms of the arising crack length as well as the corresponding
failure load. An overview can be found in Weißgraeber et al. [12]. A FFM approach has been
applied by Martin et al. [13] for the prediction of interlaminar crack onset induced by the free-
edge effect in symmetric angle-ply laminates according to the Pipes and Pagano model. The
required field quantities were determined by means of finite element method. A strong mesh
refinement towards the interface is needed due to the singular character of the stress field at the
free edge leading to a high numerical effort.
In the present study, interlaminar crack initiation at a free edge in selected symmetric angle-
ply laminates is investigated in the framework of FFM. First, the problem is treated by the
finite element method according to Martin et al. to get a reference solution. Differing from
Martin et al. no interface fracture properties fit is performed. Instead, the interface fracture
properties are determined based on the matrix resin properties. The results obtained by the
finite element method are in good agreement to experimental findings by Lagunegrand et al. [14]
considering physically reasonable interface fracture properties. Second, the numerical effort is
significantly reduced using the semi-analytical scaled boundary finite element method (SBFEM)
to determine the required singular stress fields. The SBFEM was originally developed by Song
and Wolf [15] for elastodynamics soil-structure interaction problems typically involving large
and boundless domains. Later, the method has been successfully applied to a wide range of
problems governed by linear partial differential equations, for instance, to predict crack initiation
in different structural situations using FFM [16]. The SBFEM reduces the dimension of the
problem by one due to a suitable product ansatz attended by a coordinate transformation. In
the current case only the boundary has to be discretized by one-dimensional finite elements. The
former governing partial differential equations are reduced to ordinary differential equations.
The coefficients of the simplified differential equations are determined by the finite element
method performed on the boundary. Finally, the ordinary differential equations are solved. The
application of the SBFEM to the free-edge effect is still subject of current research.

2 Modeling

The physical model addressing the free-edge effect is conducted according to Pipes and
Pagano [2]. Only symmetric angle-ply laminates, consisting of four unidirectional layers, are
considered. The fiber direction is given by the angle ϑ with respect to the global x, y, z-laminate
coordinate system as depicted in Figure 1. The material coordinate system of each layer i is
denoted by xi1, x

i
2, x

i
3. The single layer is supposed to be homogeneous and orthotropic. Linear

elastic material behavior is assumed. The validity of Saint-Venant’s Principle is postulated such
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that local effects induced by load introduction are negligible at sufficiently large distances. The
laminate is subjected to a uniform axial extension load ε0 at its ends. Hence, stresses and strains
are independent of x. Under the mentioned conditions the displacement field with respect to
the global laminate coordinate system is assumed to be

u(x, y, z) = ε0 · x+ ũ(y, z) , v(x, y, z) = ṽ(y, z) w(x, y, z) = w̃(y, z). (1)

Figure 1: Left : Part of a four layer symmetric angle-ply laminate subjected to a uniaxial
extension load ε0. Right : View of the deduced quarter model.

Differentiating the first equation with respect to x shows that the axial strain εxx = ε0 is constant
within the whole laminate. This state is called generalized plane strain state. Combining the
classical equations of elasticity with respect to the assumed displacement field (1) yields a set
of coupled, second-order partial differential equations for the unknown displacement field. The
[±ϑ]S laminate model can be simplified as a quarter model with respect to the x-y-symmetry
plane intersecting the laminate coordinate system origin and a x-z-plane of symmetry at y = b
as depicted right in Figure 1. The corresponding symmetry boundary conditions are given by

w̃(y, z = 0) = 0 , ũ(y = b, z) = 0 , ṽ(y = b, z) = 0. (2)

In order to validate the predicted failure loads related to interlaminar crack onset the experiments
of Lagunegrand et al. [14] are taken into account. The thickness of a single ply as well as the
elasticity properties are taken from Lagunegrand et al. and can be found in Table 1. The
laminate width is set to b = 10 mm. The length L is arbitrarily chosen to 0.05 mm. According
to the generalized plane strain state, the chosen length L has no impact to the stresses and
strains.

Table 1: Properties of a single ply with respect to the material coordinate system for the
G947/M18 laminate [14].

E11 [GPa] E22 [GPa] E33 [GPa] G12 [GPa] G13 [GPa] G23 [GPa] ν12 ν13 ν23 t [mm]

97.6 8.0 8.0 3.1 3.1 2.7 0.37 0.37 0.5 0.19
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3 Finite fracture mechanics

Due to the weak singular stress field and the lack of a pre-existing crack neither classical
stress based criteria, nor fracture mechanics approaches allow for a prediction of failure loads
for interface crack onset at laminates’ free edges. The singular stress field leads to an automatic
fulfillment of stress based criteria. Linear elastic fracture mechanics (LEFM) approaches are
restricted to crack-like singularities. In order to overcome the limitation of LEFM based energy
criteria the incremental energy release rate G was introduced.

G =
1

∆A

∫ ∆A

0
G(Ã)dÃ = −∆Π

∆A
, (3)

where G denotes the differential energy release rate, A the crack area and Π the total energy
potential. Note that Eq. (3) is not restricted to crack singularities. By means of the incremental
energy release rate a Griffith-type criterion can be formulated. As a consequence, the unknown
finite crack size ∆A has to be determined in addition to the unknown failure load Pf . Leguillon
[11] proposed a coupled stress and energy based criterion in order to determine the failure load
as well as the finite crack size. In general, the coupled criterion can be given as

f (σ (x, P )) ≥ σc ∀ x ∈ Ωc (∆A) ∧ G (∆A,P ) ≥ Gc, (4)

where Ωc denotes the potential crack surface. Regarding the given symmetric four-layer angle-
ply laminate solely crack initiation in the interface between the +ϑ and the −ϑ layer induced by
free-edge effect is investigated. The simultaneous appearance of four similar cracks, each starting
from the free edge of an intersection between differently orientated layers, is assumed. As shown
subsequently, interlaminar stresses as well as the incremental energy release rate behave strictly
monotonic in the vicinity of the free edge. Hence, the coupled criterion (4) can be formulated
by means of equalities instead of inequalities. In the present work, only angle-ply laminates
up to [±30◦]S are investigated such that the interlaminar stresses σxz are predominant in the
interface in the vicinity of the free edge. Thus, according to Martin et al., a simple stress
criterion is chosen accounting for σxz along the interface only. The crack size can be expressed
as ∆A = L ·∆a in which L denotes the length of the model (Figure 1) and ∆a the crack length
in y-direction. The coupled criterion for the investigated structural situation is given by

σxz

(
y = ∆ac, ε0 = εf

0

)
= σxz (∆ac, ε

∗
0)
εf

0

ε∗0
= τc, (5)

G
(

∆a = ∆ac, ε0 = εf
0

)
= G (∆ac, ε

∗
0)

(
εf

0

ε∗0

)2

= G3c = Gc, (6)

where ∆ac denotes the unknown crack length and εf
0 the unknown failure strain. In this par-

ticular case, the interlaminar stress behavior as well as the incremental energy release rate is
determined only once for the arbitrarily chosen load ε∗0 = 1 and scaled to any load for a fixed
laminate layup. Combining Eq. (5) and Eq. (6) yields

G (∆ac, ε
∗
0)

(σxz (∆ac, ε∗0))2 =
Gc

τ2
c

. (7)

Determination of the roots of Eq. (7) provides the sought critical crack length ∆ac. Furthermore,
it can be seen that the length of an initiated interface crack solely depends on the interface
fracture toughness Gc and strength τc. Substituting the obtained critical crack length either into
Eq. (5) or Eq. (6) gives the corresponding failure strain εf

0.
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4 Finite element reference model

The finite element method is used to obtain a reference solution for the introduced problem.
To this end, the quarter model (Figure 1) has been implemented in the commercial FE software
Abaqus. A consistent implementation with respect to Pipes and Pagano’s work is realized using
only one element in x-direction. To satisfy the assumed generalized plane strain state, degrees
of freedom of opposite nodes in the x-direction are coupled by means of multi-point constraints.
In order to capture the laminate free-edge effect properly, the mesh is refined towards the
interface as well as the free edge. A convergence study has been performed to ensure an accurate
evaluation of the interface stresses and incremental energy release rates. The smallest element
size found at the bi-material point of the free edge, is about 0.001 mm. Due to the refinement
the model in total includes about 143000 degrees of freedom. Fully integrated three-dimensional
brick elements with quadratic shape functions have been used (C3D20).

5 Results obtained by the finite element method

In this section results of the finite element analyses are presented and compared to experi-
mental data from literature. Crack initiation is expected in the interface between the +ϑ and
−ϑ layer. Hence, stresses along this interface are investigated. The obtained interface stresses
are depicted in Figure 2a-c. The interlaminar shear stress σxz as well as the normal stress σzz
becomes singular at the free edge. In order to meet the boundary condition at the free edge,
the interlaminar shear stress σyz decays to zero. As mentioned before, the interface shear stress
σxz is predominant in the vicinity of the free edge for the considered laminate layups so that
this stress is accounted for evaluation of the stress criterion solely. Note, that the predominant
σxz shear stress rapidly decays towards the interior laminate so that it vanishes in a distance of
about three times the single ply thickness t. In comparison, the interlaminar stress σzz as well as
the shear stress σyz fade out slower. They subside after about six and eight times the single-ply
thickness. The incremental energy release rate G is evaluated with respect to potential interface
cracks of the length ∆a (Figure 2d) using

G (ε∗0,∆a) = −W (ε∗0,∆a) − W (ε∗0,∆a = 0)

∆aL
. (8)

W denotes the elastic strain energy of the arbitrarily loaded laminate quarter model. As de-
picted, the incremental energy release rate reaches a plateau for longer cracks. In consideration
of Eq. (8) Equation (7) yields the critical crack length ∆ac with respect to the quotient of inter-
face fracture properties as shown in Figure 3a. In order to be able to evaluate failure loads for
the investigated laminates, the actual interface fracture properties must be known a priori. The
determination of interface fracture properties has been widely discussed in literature. However,
it can be summarized that it is difficult to measure them. Due to the lack of reliable interface
fracture properties for the investigated G947/M18 angle-ply laminates the following assumptions
are made. As a first approximation, it is presumed that the interface fracture properties are
dominated by the properties of the epoxy matrix resin (Table 2).
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(a) Normalized interface shear stresses σxz (b) Normalized interface shear stresses σyz

(c) Normalized interface normal stresses σzz (d) Incremental energy release rate

Figure 2: Normalized interface stresses and incremental energy release rates for selected
G947/M18 angle-ply laminates, obtained by the finite element method. The interface stresses
are normalized with respect to the particular effective laminate stiffness Exx. The effective stiff-

ness is determined based on CLPT such that Exx = 1
4t

(
A11 −

A2
12

A22

)
, in which Aij denotes the

extensional stiffness quadrant of the laminate stiffness matrix.

Table 2: Properties of the cured (180◦C) M18 matrix resin according to the manufacturer [17].

E [GPa] ν Rm
σ [MPa] GmIc [N/mm]

3.5 0.38 81.1 0.193

Consequently, and based on [18], it is assumed that the laminate’s mode 1 interface fracture
toughness G1c is about the matrix fracture toughness Gm

Ic. In literature, mode 1 interface frac-
ture toughnesses for composites are within a range of 0.08 - 1.0 N/mm [18, 19]. Furthermore,
the mode 3 interface fracture toughness is set to G3c = 2G1c. As shown in Figure 2a-c the
interlaminar shear stresses σxz are predominant. Hence, the critical interface strength is set to
τc = Rm

σ /
√

3 according to the von Mises criterion. Based on the solution of Eq. (7) the corre-
sponding failure strains, with respect to the interface fracture properties, are obtained using Eq.
(6), and depicted in Figure 3b-d. The failure strain predictions for the chosen interface fracture
properties can be found in Table 3 in comparison to experimental findings from literature. The
predicted results slightly underestimate the experiments. However, the differences are within an
error range of 8.83 % and 2.63 % only.

6
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(a) Normalized crack lengths (b) Failure strains for [±10◦]S

(c) Failure strains for [±20◦]S (d) Failure strains for [±30◦]S

Figure 3: Predicted normalized crack lengths and corresponding failure strains with respect
to the interface fracture properties Gc and τc for selected G947/M18 angle-ply laminates. For
comparison, the failure strains experimentally determined by [14] are also shown.

Table 3: Predicted failure strains εf
0 with respect to the chosen interface fracture properties in

comparison to the experimentally determined failure strains εf
0,exp by Lagunegrand et al. [14].

layup τc [MPa] Gc [N/mm] ∆ac/t [−] εf0 [−] εf0,exp [−]

[±10◦]S 47.2 0.386 0.784 0.00816 0.00895− 0.00917

[±20◦]S 47.2 0.386 1.086 0.00785 −
[±30◦]S 47.2 0.386 1.167 0.01149 0.01180− 0.01230

6 Scaled Boundary Finite Element Method

In the following, the scaled boundary finite element is introduced. The considered domain
has to fulfill the geometrical scaling requirement. The investigated structural situation has to
be a star domain. The scaling center S lies on the free edge at the interface between the +ϑ and
−ϑ layer (Figure 4). A scaled boundary ξ,η-coordinate system is introduced. The scaled radial
ξ-coordinate starts at the scaling center where it takes the value zero and reaches the value 1
on the boundary. A part of the boundary Γd (red marked) is characterized by the boundary
coordinate η. Any point which is part of the domain is described by scaling the corresponding
point on the boundary Γd with ξ. The transformation from the Cartesian x,y,z-coordinate

7
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system into scaled boundary ξ,η-coordinate system is described by

x = xS + ξxη(η), (9)

where xS denotes the Cartesian coordinates of the scaling center.

Figure 4: SBFEM quarter model for the four-layer angle-ply laminate.

The corresponding Jacobian matrix Jη(η), only depending on the boundary coordinate η, is
given by [

∂
∂ξ
∂
ξ∂η

]
=

[
∂y(ξ,η)
∂ξ

∂z(ξ,η)
∂ξ

∂y(ξ,η)
ξ∂η

∂z(ξ,η)
ξ∂η

][
∂
∂y
∂
∂z

]
= Jη(η)

[
∂
∂y
∂
∂z

]
(10)

The transformation of the derivatives can be performed using the differential operator L to

L =



0 0 0

0 1 0

0 0 0

0 0 1

0 0 0

1 0 0


∂

∂y
+



0 0 0

0 0 0

0 0 1

0 1 0

1 0 0

0 0 0


∂

∂z
= Ly

∂

∂y
+Lz

∂

∂z
= Lξ

∂

∂ξ
+Lη

1

ξ

∂

∂η
, (11)

where Lξ and Lη are given by

Lξ = Lyj11 +Lzj21, Lη = Lyj12 +Lzj22,

and jmn (m,n = 1, 2) denotes the components of the inverse Jacobian matrix J−1
η . The trans-

formed differentials are described by

dV = det(Jη)ξ dηdξ, dA =

∣∣∣∣∣∣∣∣∂xη∂η

∣∣∣∣∣∣∣∣ξ dη.

A finite element method is performed on a part of the boundary Γd (Figure 4) under the
assumption of a separation ansatz in order to determine the unknown displacements ũ,ṽ,w̃ with
respect to the ξ,η-coordinate system. The separation of variables ansatz is given by

u(ξ, η) ≈ ũ(ξ, η) = N(η)û(ξ). (12)

in which the matrix of piecewise polynominal shape functions only depending of the boundary
coordinate η is denoted with N(η). The unknown free values û(ξ) are scaled with ξ such that

8
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the nodal displacements on the boundary are described for ξ = 1. The corresponding strains
are given by

ε̃(ξ, η) = Lũ+ S = Bξû,ξ +Bη
1

ξ
û+ S, (13)

in which S describes the extension load ε0 and

Bξ = LξN(η), Bη = LηN,η(η).

Using the principle of virtual displacements, with vanishing stresses tractions on boundary and
vanishing volume loads, yields the SBFEM basic equations

ξ2K0û,ξξ(ξ) + ξ
(
K0 +KT

1 −K1

)
û,ξ(ξ)−K2û(ξ) + ξ (Sξ − Sη) = 0, (14)

K0û,ξ(ξ = 1) +KT
1 û(ξ = 1) + Sξ = 0, (15)

KT
1 û(ξ = 0) = 0, (16)

where

K0 =

∫
η
BT
ξ (η)EBξ(η) det(Jη) dη, Sξ =

∫
η
BT
ξ (η)ES det(Jη) dη,

K1 =

∫
η
BT
η (η)EBξ(η) det(Jη) dη, Sη =

∫
η
BT
η (η)ES det(Jη) dη,

K2 =

∫
η
BT
η (η)EBη(η) det(Jη) dη.

E denotes the stiffness matrix of the orthotropic Hooke’s Law transformed into the global
laminate coordinate system. Eq. (14) represents a second order, linear, non-homogeneous,
ordinary differential equation system with variable coefficients. The homogeneous part of the
equation has a certain structure (Euler-Cauchy-equation) and can be reduced to equations with
constant coefficients by introducing the substitution t = ln(ξ):

K0û,tt(t) +
(
KT

1 −K1

)
û,t(t)−K2û(t) = 0. (17)

Furthermore, the second order differential equations (17) are transformed into first order equa-
tions using v̂(t) = ∂û

∂t [
v̂,t

û,t

]
=

[
−K−1

0

(
KT

1 −K1

)
K−1

0 K2

I 0

]
︸ ︷︷ ︸

κ

[
v̂

û

]
. (18)

Incorporating the exponential approach[
v̂

û

]
= eλt

[
Ψ

Φ

]
(19)

into (18) yields the eigenvalue problem

(κ− λI)

[
Ψ

Φ

]
= 0, (20)

which is solved numerically using the QR-algorithm. It can be shown that the eigenvalue spec-
trum must be symmetric with respect to zero. Six zero eigenvalues are obtained representing

9



S. Dölling, S. Hell and W. Becker

deformation modes due to rigid body motions as well as single forces. Only three corresponding
linearly independent eigenvectors are obtained. These eigenvectors are related to rigid body
motions. Hence, the missing eigenvectors have to be determined in order to obtain a fundamen-
tal solution. Since there do not exist single forces in the present problem, the determination of
the corresponding eigenvectors is not further pursued. Using the back substitution the reduced
homogeneous solution is given by

û(ξ) =
2n−3∑
i=1

ci ξ
λiΦi = cD(ξ)Φu, (21)

where the single force modes are not considered and n denotes the length of the vector û. The
particular solution of the non-homogeneous differential equations can be found by the method
of undetermined coefficients. Hence, the approach

ûp = Φp ξ, (22)

is incorporated into Eq. (14) yielding a system of linear equations with respect to Φp(
K0 +KT

1 −K1 −K2

)
Φp = Sη − Sξ, (23)

The total displacement is finally given by

û(ξ) = cD(ξ)Φu + Φp ξ. (24)

Subsequently, the unknown constants c are determined by substituting Eq. (24) into Eq. (15)
and Eq. (16). It is worth to mention that Eq. (16) can only be fulfilled if the constants
corresponding to eigenvalues λi < 0 become zero. Hence, only deformation modes with λi ≥ 0
are considered. In conclusion, the sought displacements û(ξ, η) are given by Eq. (12).
In the following the results obtained by the SBFEM using linear shape functions are introduced.
Initially, the singular character of the stress field with respect to the laminate layup is discussed.
The SBFEM can be advantageously applied to singular stress fields due to the fact that the
solution of the eigenvalue problem (20) yields the corresponding singularity order. As shown in
Figure 5, the free-edge effect induces weak stress singularities.

layup λSBFEM λanalytic

[±10◦]S 0.999703 0.999725

[±20◦]S 0.992273 0.992521

[±30◦]S 0.970624 0.971243

Figure 5: Left : Examination of singular eigenvalues (0 < λ < 1) for selected G947/M18 angle-
ply laminates by means of the SBFEM (195 degrees of freedom). Right : In comparison, singular
eigenvalues predicted numerically, and analytically. Even with a few degrees of freedom, the
singularity order predicted by the SBFEM is reproduced very accurately.

10
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The singularity order Re (1− λ) strongly depends on the laminate layup. A growing ply
angle ϑ goes along with an increasing singularity order up to ϑ = 45◦, where the effect becomes
maximum. Based on the results shown in Figure 3, it can be concluded that an increasing
singularity order goes along with a reduction of the effective laminate strength in the sense of
interlaminar crack onset.
Solving the boundary value problem yields the sought displacement field. As depicted in Figure
6 the in-plane deformation of the contour close to the free edge determined by SBFEM is in
good agreement with the FEM reference solution. Hence, a good agreement for the application
of the coupled criterion compared to the FE reference solution can be expected. An assessment
based on the SBFEM stress solution is subject of current research.

Figure 6: Deformed contour of the quarter model determined by FEM (red marked) as well as
SBFEM for an G947/M18 angle-ply laminate (b = 0.57 mm).

7 Conclusion

The finite fracture mechanics approach has been applied to the free-edge effect in composite
laminates in order to predict interface crack onset. First, the required stresses and incremental
energy release rates have been obtained by means of the finite element method. Good results
have been achieved compared to experiments from literature. Subsequently, the scaled boundary
finite element method has been implemented in order to reduce the computational effort. Results
show the high potential of the scaled boundary finite element method compared to the finite
element method regarding the numerical effort and accuracy. The displacements obtained by the
SBFEM are in good agreement with the FEM solution. As a next step, the quantities determined
by the SBFEM will be used for developing an efficient FFM failure model for interface crack
onset in composite laminates.
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